In this paper we investigate weight cubature formula in function spaces of S.L. Sobolev L2(m),Lp(m),L¯2(m) for the functions defined in the n - dimensional unit cube Kn and obtain an upper estimate for the norm of error functionals of weight cubature formulas. The basis of theorem N.S. Bahvalov it isproved that consideredviewed cubature formulas are optimal on order of convergence in these spaces.

1.
S. L.
Sobolev
,
Introdaction to the theory of cubature formulas
(
Moscow
,
Nauka
,
1974
).
2.
M. D.
Ramazanov
,
Lectures on theory of approximate integration
(
Bashkir State University
,
1973
).
3.
G. N.
Salikhov
,
Cubature formulas for multidimensional sphere.
(
Tashkent
,
Fan
1985
).
4.
K. M.
Shadimetov
, “
Construction of weight optimal quadrature formulas in l2(m) (0,1)
,”
Sibirian journal of Computational Matematics, Novosibirsc.
5
,
275
293
(
2002
).
5.
K. M.
Shadimetov
,
Layyice quadrature and cubature formulas in the Sobolev space. Dissertation of Doctor of Sciences
, PhD dissertation, Tashkent (
2002
), a full PHDTHESIS entry.
6.
T.
Catinas
and
G.
Coman
, “
Stability of nonlinear modes
,”
Mathematica
52
,
1
16
(
2005
).
7.
P.
Blaga
and
G.
Coman
, “
Some problems on optimal quadrature. studia univ
,”
Mathematica
52
,
21
44
(
2007
).
8.
P.
Kohler
, “
On the weights of sard’s quadrature formulas
,”
Calcolo
25
,
169
186
(
1988
).
9.
F.
Lanzara
, “
On optimal quadrature formulae
,”
of Inequality Appl
5
,
201
225
(
2000
).
10.
Kh.M.
Shadimetov
and
A.R.
Hayotov
, “
Optimal quadrature formulas with positive coefficients in l2(m) (0,1)
,”
Journal of Computational and Applied Mathematics
235
,
1114
1128
(
2011
).
11.
A. R.
Hayotov
,
G.
Milovanovic
, and
K. M.
Shadimetov
, “
On an optimal quadrature formula in the sense of sard
,”
Numerical Algorithms
57
,
487
510
(
2011
).
12.
T. H.
Sharipov
,
Some problems of the theory of approximate integration. Dissertation of Candidate of Sciences
, PhD dissertation, Tashkent (
1975
), a full PHDTHESIS entry.
13.
Kh.
Shadimetov
and
F. A.
Nuraliev
., “
Optimization of quadrature formulas with derivatives
,”
Problems of computational and applied matem- atics
4
,
61
70
(
2017
).
14.
A.
Nuraliev
., “
Minimisation the error functionals norm of the hermitian type quadrature formula
,”
Uzbek Matematical journal
1
,
53
64
(
2015
).
15.
Kh.M.
Shadimetov
and
B.S.
Daliev
, “
The extremal function of quadrature formulas for the approximate solution of the generalized abel integral eduation
.”
Problems of computational and applied matematics
2
,
88
96
(
2019
).
16.
A. R.
Hayotov
and
S. S.
Babaev
, “
Optimal quadrature formulas for computing of Fourier integrals in a Hilbert space
.”
Problems of computational and applied mathematics
4
(
28
),
73
84
(
2020
).
17.
O.I.
Jalolov
, “
Higher bound for the norm of the error functional of weight cubature formulas in the space
,”
Modern problems of the appliend mathematics and information technology- Al-Khorezmiy 2012
1
,
19
22
(
2012
).
18.
O.I.
Jalolov
, “
The bound of the weight cubature formulas in the space
,”
Applied mathematics and information security
,
25
30
(
2014
).
19.
O.I.
Jalolov
, “
Counting the norm of the error functional of the interpolation formulas periodical function in the space sobolev
,”
Problems of computational and applied matematics
4
,
53
58
(
2015
).
20.
O.I.
Jalolov
, “
The optimal in the order of weight cubature formulas of the hermitian type in the space sobolev
,”
East European Scientific Journal
85/21
,
162
170
(
2016
).
21.
O.I.
Jalolov
, “
Higher bound the norm of the error functional of weight cubature formulas of the hermitian type in the space sobolev
,”
Problems of computational and applied matematics
3
,
70
78
(
2017
).
22.
O.I.
Jalolov
, “
The lower bound for the norm of the error functional of lattice cubature formulas in the space
,”
Modern problems of the appliend mathematics and information technology - Al- Khorezmiy 2018
1
,
149
150
(
2018
).
23.
S. L.
Sobolev
,
Some applications of functional analysis in mathematical physics
(
Leningrad
,
Nauka
,
1950
).
24.
N. S.
Bahvalov
,
Numerical methods
(
Moscov
,
Nauka
,
1973
).
25.
A. R.
Hayotov
,
G. V.
Milovanovic`
, and
Kh. M.
Shadimetov
, “
Optimal quadratures in the sense of Sard in a Hilbert space
,”
Applied Mathematics and Computation
259
,
637
653
(
2015
).
26.
Kh. M.
Shadimetov
,
A.
Hayotov
, and
F. A.
Nuraliev
, “
On an optimal quadrature formula in sobolev space L2(m) (0,1)
.”
J. Comput. Appl. Math.
243
,
91
112
(
2013
).
27.
S. S.
Babaev
and
A. R.
Hayotov
, “
Optimal interpolation formulas in the space W2(m,m1)
,”
Calcolo
56
, (
2019
).
28.
O. S.
Zikirov
, “
Boundary-value problems for a class of third-order composite type equations
,”
Operator Theory: Advances and Applications
216
,
331
341
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.