In this note, the homotopy analysis method (HAM) is applied as a tool for solving the system of non-linear Fredholm-Volterra integral equations. The generalized chain rule is implemented for differentiation of the non-linear kernel functions with many variables, and the non-linear problem is reduced into a sequence of known non-linear integral equa- tions. The proposed method is compared with the homotopy perturbation method (HPM) given in Yusufogli [20] and Biazar and Ghazyini [21]. Numerical results reveal that the proposed method is very effective with high accuracy and dominated the HPM.

1.
Amini
S.
,
Sloan
lh
.,
Collocation methods for second kind integral equations with non-compact operators
.
Journal of integral equations and applications
, Vol
2
(
1
), pp.
1
30
,
1989
.
2.
Atkinson
L
,
Bogomolny
A.
The Discrete Galerkin Method for Integral Equations
.
Mathematics of Computation
, Vol.
48
, No
178
, pp.
595
616
,
1987
.
3.
Mcalevey
L. G.
,
Product integration rules for Volterra integral equations of the first kind
,
BIT
, Vol.
27
, pp.
235
-
247
, 1987.
4.
Eshkuvatov
Z.K.
,
Nik
Long
N.M.A.,
Muminov
Z. I.
,
Khaldjigitov
A. A.
,
Mixed Method for the Product Integral on the Infinite Interval
,
Malaysian Journal of Mathematical Sciences
8(S
):
71
82
(
2014
) Special Issue: International Conference on Mathematical Sciences and Statistics 2013 (ICMSS2013).
5.
Liang
,
D.
,
Zhang
,
B.
:
Numerical analysis of graded mesh methods for a class of second kind integral equations on real line
.
J. Math. Anal. Appl.
294
,
482
502
(
2004
).
6.
K.
Maleknejad
,
A.
Ostadi
,
Using Sinc-collocation method for solving weakly singular Fredholm integral equations of the first kind. Applicable Analysis
,
An International Journal
, Vol.
96
(
4
),
2017
.
7.
Huabsomboon
P.
,
Novaprateep
B.
,
Kaneko
H.
,
On Taylor-series expansion methods for the second kind integral equations
,
Journal of Computational and Applied Mathematics
, Vol.
234
, pp.
1466
1472
,
2010
.
8.
Eshkuvatov
Z. K.
,
Kammuji
M.
,
Bachok M.
Taib
,
Nik
Long
N. M. A.,
Effective approximation method for solving linear Fredholm-Volterra integral equations
.
NACO
, Vol.
7
(
1
), pp.
77
88
,
2017
.
9.
Choreishi
F.
,
Hadizadeh
M
,
Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations
,
Numerical Algorithms
, Vol.
52
(
4
), pp.
541
559
,
2009
.
10.
Babolian
,
E.
,
Davari
,
A.
:
Numerical implementation of Adomian decomposition method
.
Appl. Math. Comput.
153
,
301
305
(
2004
)
11.
Babolian
,
E.
,
Biazar
,
J.
,
Vahidi
,
A.R.
:
The decomposition method applied to systems of Fredholm integral equations of the second kind
.
Appl. Math. Comput.
148
,
443
452
(
2004
).
12.
Liao
,
S.J.
:
Beyond Perturbation: Introduction to the Homotopy Analysis Method
.
Chapman and Hall/CRC
,
Boca Raton
(
2003
).
13.
S.J.
Liao
,
Notes on the homotopy analysis method: some definitions and theorems
,
Commun. NonlinearSci. Numer. Simul.
14
(
2009
),
983
997
.
14.
Hayat
,
T.
,
Javed
,
T.
,
Sajid
,
M.
:
Analytic solution for rotating flow and heat transfer analysis of a third-grade fluid
.
Acta Mech.
191
,
219
229
(
2007
).
15.
Hayat
,
T.
,
Khan
,
M.
,
Sajid
,
M.
,
Asghar
,
S.
:
Rotating flow of a third grade fluid in a porous space with hall current
.
Nonlinear Dyn.
49
,
83
91
(
2007
).
16.
Abbasbandy
,
S.
:
The application of the homotopy analysis method to solve a generalized Hirota–Satsuma coupled KdV equation
.
Phys. Lett., A.
361
,
478
483
(
2007
).
17.
Abbasbandy
,
S.
:
The application of the homotopy analysis method to nonlinear equations arising in heat transfer
.
Phys. Lett., A.
360
,
109
113
(
2006
).
18.
Abbasbandy
,
S.
,
Magyari
,
E.
,
Shivanian
,
E.
:
The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun
.
Nonlinear Sci. Numer. Simulat.
14
,
3530
3536
(
2009
).
19.
Z.
Mahmoodi
,
Collocation method for solving systems of Fredholm and Volterra integral equations
,
International Journal of Computer Mathematics
, Vol.
91
(
2
),
2014
.
20.
Yusufogli
E.
,
A homotopy perturbation algorithm to solve a system of Fredholm–Volterra type integral equations
,
Mathematical and Computer Modelling
47
, pp.
1099
1107
,
2008
.
21.
Biazar
J.
,
Ghazvini
H.
,
He’s homotopy perturbation method for solving system of Volterra integral equations of the second kind
,
Chaos, Solitons and Fractals
39
, pp.
770
777
,
2009
.
This content is only available via PDF.
You do not currently have access to this content.