In this note, the homotopy analysis method (HAM) is applied as a tool for solving the system of non-linear Fredholm-Volterra integral equations. The generalized chain rule is implemented for differentiation of the non-linear kernel functions with many variables, and the non-linear problem is reduced into a sequence of known non-linear integral equa- tions. The proposed method is compared with the homotopy perturbation method (HPM) given in Yusufogli [20] and Biazar and Ghazyini [21]. Numerical results reveal that the proposed method is very effective with high accuracy and dominated the HPM.
REFERENCES
1.
Amini
S.
, Sloan
lh
., Collocation methods for second kind integral equations with non-compact operators
. Journal of integral equations and applications
, Vol 2
(1
), pp. 1
–30
, 1989
.2.
Atkinson
L
, Bogomolny
A.
The Discrete Galerkin Method for Integral Equations
. Mathematics of Computation
, Vol. 48
, No 178
, pp. 595
–616
, 1987
.3.
Mcalevey
L. G.
, Product integration rules for Volterra integral equations of the first kind
, BIT
, Vol. 27
, pp. 235
-247
, 1987.4.
Eshkuvatov
Z.K.
, Nik
Long
N.M.A., Muminov
Z. I.
, Khaldjigitov
A. A.
, Mixed Method for the Product Integral on the Infinite Interval
, Malaysian Journal of Mathematical Sciences
8(S
): 71
–82
(2014
) Special Issue: International Conference on Mathematical Sciences and Statistics 2013 (ICMSS2013).5.
Liang
, D.
, Zhang
, B.
: Numerical analysis of graded mesh methods for a class of second kind integral equations on real line
. J. Math. Anal. Appl.
294
, 482
–502
(2004
).6.
K.
Maleknejad
, A.
Ostadi
, Using Sinc-collocation method for solving weakly singular Fredholm integral equations of the first kind. Applicable Analysis
, An International Journal
, Vol. 96
(4
), 2017
.7.
Huabsomboon
P.
, Novaprateep
B.
, Kaneko
H.
, On Taylor-series expansion methods for the second kind integral equations
, Journal of Computational and Applied Mathematics
, Vol. 234
, pp. 1466
–1472
, 2010
.8.
Eshkuvatov
Z. K.
, Kammuji
M.
, Bachok M.
Taib
, Nik
Long
N. M. A., Effective approximation method for solving linear Fredholm-Volterra integral equations
. NACO
, Vol. 7
(1
), pp. 77
–88
, 2017
.9.
Choreishi
F.
, Hadizadeh
M
, Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations
, Numerical Algorithms
, Vol. 52
(4
), pp. 541
–559
, 2009
.10.
Babolian
, E.
, Davari
, A.
: Numerical implementation of Adomian decomposition method
. Appl. Math. Comput.
153
, 301
–305
(2004
)11.
Babolian
, E.
, Biazar
, J.
, Vahidi
, A.R.
: The decomposition method applied to systems of Fredholm integral equations of the second kind
. Appl. Math. Comput.
148
, 443
–452
(2004
).12.
Liao
, S.J.
: Beyond Perturbation: Introduction to the Homotopy Analysis Method
. Chapman and Hall/CRC
, Boca Raton
(2003
).13.
S.J.
Liao
, Notes on the homotopy analysis method: some definitions and theorems
, Commun. NonlinearSci. Numer. Simul.
14
(2009
), 983
–997
.14.
Hayat
, T.
, Javed
, T.
, Sajid
, M.
: Analytic solution for rotating flow and heat transfer analysis of a third-grade fluid
. Acta Mech.
191
, 219
–229
(2007
).15.
Hayat
, T.
, Khan
, M.
, Sajid
, M.
, Asghar
, S.
: Rotating flow of a third grade fluid in a porous space with hall current
. Nonlinear Dyn.
49
, 83
–91
(2007
).16.
Abbasbandy
, S.
: The application of the homotopy analysis method to solve a generalized Hirota–Satsuma coupled KdV equation
. Phys. Lett., A.
361
, 478
–483
(2007
).17.
Abbasbandy
, S.
: The application of the homotopy analysis method to nonlinear equations arising in heat transfer
. Phys. Lett., A.
360
, 109
–113
(2006
).18.
Abbasbandy
, S.
, Magyari
, E.
, Shivanian
, E.
: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun
. Nonlinear Sci. Numer. Simulat.
14
, 3530
–3536
(2009
).19.
Z.
Mahmoodi
, Collocation method for solving systems of Fredholm and Volterra integral equations
, International Journal of Computer Mathematics
, Vol. 91
(2
), 2014
.20.
Yusufogli
E.
, A homotopy perturbation algorithm to solve a system of Fredholm–Volterra type integral equations
, Mathematical and Computer Modelling
47
, pp. 1099
–1107
, 2008
.21.
Biazar
J.
, Ghazvini
H.
, He’s homotopy perturbation method for solving system of Volterra integral equations of the second kind
, Chaos, Solitons and Fractals
39
, pp. 770
–777
, 2009
.
This content is only available via PDF.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.