Biodegradable plastic was synthesized from the starch of yellow kepok banana weevil, and the effect of ascorbic acid concentration on its properties was evaluated. Chitosan was used for filler in a plastic network. Starch and chitosan have been used widely as materials for plastic due to their biodegradability and nontoxic effect. The mechanical properties include tensile strength, elongation, biodegradability, and water resistance to determine the quality of the plastic that has been synthesized. The result of FTIR spectroscopy analysis showed that the interactions between starch, chitosan, and ascorbic acid were hydrogen bonds and the ionic interaction of protonated amine in chitosan by the ascorbic acid. The elongation and biodegradability of the plastics were increased as the amount of ascorbic acid raised, whereas their tensile strength was decreased. The biodegradable test confirmed that obtained bioplastic could degrade by 25-66.67% in the soil for 6 days. Therefore, ascorbic acid is good as a plasticizer in starch-based plastic production.

1.
E.
Kamsiati
,
H.
Herawati
, and
E. Y.
Purwani
,
J. Litbang Pertanian
36
,
67
76
(
2017
).
2.
P.
Purwaningrum
,
J. Tek. Ling.
8
,
14l
147
(
2019
).
3.
K. P.
Wijayanti
,
Surya Octag. Interdiscip. J. Technol.
1
,
2460
8777
(
2016
).
4.
Z. L.
Wang
,
Adv. Funtion Mater.
1
,
8
10
(
2008
).
5.
A.
Purwanti
,
J. Tek. Ling.
3
,
99
l06
(
2010
).
6.
Y. E.
Agustin
and
K. S.
Padmawijaya
,
J. Tek. Kim.
10
,
40
48
(
2016
).
7.
S. Do
Yoon
,
J. Agric. Food Chem.
62
,
1755
1764
(
2014
).
8.
D.
Hermanto
,
M.
Mudasir
,
D.
Siswanta
, and
N.
Ismillayli
,
J. Math. Fundam. Sci.
51
,
309
3l9
(
2019
).
9.
A.
Melani
,
N.
Herawati
, and
A. F.
Kurniawan
,
J. Distilasi
2
,
53
67
(
2017
).
10.
S.
Aripin
,
B.
Saing
, and
E.
Kustiyah
,
J. Tek. Mesin
6
,
79
84
(
2017
).
11.
I. G.
Sanjaya
and
T.
Puspita
,
J. Tek. Kim.
(
2011
).
12.
W.
Setiani
,
T.
Sudiarti
, and
L.
Rahmidar
,
J. Kim. Val.
3
,
100
109
(
2013
).
13.
A. W.
Utomo
,
B. D.
Argo
, and
M. B.
Hermanto
,
J. Bioproses Komod. Trop.
1
,
73
79
(
2023
).
14.
T.
Anggraini
,
F.
Azima
, and
R.
Yenrina
,
Res. J. Pharm. Biol. Chem. Sci.
8
,
1339
1351
(
2017
).
15.
Maulida
,
M.
Siagian
, and
P.
Tarigan
,
J. Phys. Conf. Ser.
710
,
1
7
(
2016
).
16.
N.
Ismillayli
,
S.
Hadi
,
N. K. T.
Dharmayani
,
R. K.
Sanjaya
, and
D.
Hermanto
, “Characterization of alginate-chitosan membrane as potential edible film”,
Int. Conf. Chem. Mater. Sci
.
833
, edited by
Y. P.
Prananto
, et al.
(
IOP Publishing
,
Bristol, England
,
2020
)
012073
.
17.
D.
Hermanto
,
M.
Mudasir
,
D.
Siswanta
,
B.
Kuswandi
, and
N.
Ismillayli
,
Molekul
15
,
40
47
(
2020
).
18.
H.
Setiawan
,
R.
Faizal
, and
A.
Amrullah
,
J. Sains dan Teknol.
13
,
29
38
(
2015
).
19.
A.
Rifaldi
,
I.
Hs
, and
Bahruddin
,
J. Online Mhs. Fak. Tek. Univ. Riau
4
,
1
7
(
2017
).
20.
J.
Li
,
J.
Ma
,
S.
Chen
,
Y.
Huang
, and
J.
He
,
Mater. Sci. Eng.
89
,
25
32
(
2018
).
21.
A.
Asngad
,
R.
Amella
, and
N.
Aeni
,
Bioeksperimen
4
,
11
19
(
2018
).
22.
N.
Ismillayli
,
I. G. A. S.
Andayani
,
R.
Honiar
,
B.
Mariana
,
R. K.
Sanjaya
, and
D.
Hermanto
, “Polyelectrolyte complex (PEC) film based on chitosan as potential edible films and their antibacterial activity test”.
IOP Conf. Ser. Mater. Sci. Eng
.
959
, edited by
D. B.
Nugroho
, et al.
(
IOP Publishing
,
Bristol, England
,
2020
)
012009
.
23.
M. A.
Porras
,
M. A.
Cubitto
, and
A.
Villar
,
J. Chem. Technol. Biotechnol.
9
,
1
25
(
2015
).
24.
A.
Budirohmi
,
A.
Ahmad
,
Firdaus
,
P.
Taba
, and
D.
Tahir
,
J. Phys. Conf. Ser.
1341
,
1
10
(
2019
).
25.
T.
Xiaolin
,
T.
Dafeng
,
W.
Zhongyan
, and
M.
Fengkui
,
J. Appl. Polym. Sci.
114
,
2986
2991
(
2009
).
26.
D.
Hermanto
,
B.
Kuswandi
,
D.
Siswanta
, and
Mudasir
,
Indones. J. Chem.
19
,
786
795
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.