Recent developments of glass ionomer cement (GIC) have made it to become an excellent dental restorative material, nevertheless, its mechanical properties still need to be improved. The mechanical strength of glass ionomer cement could be enhanced through the addition of fluorhydroxyapatite nanocrystal, one of the minerals that compose dental hard tissues and therefore have great biocompatibility. This study aims to evaluate the effect of different amounts of fluorhydroxyapatite nanocrystals with different degrees of fluoridation incorporation to glass ionomer cement mechanical strength. Fluorhydroxyapatite nanocrystals with 0 to ∼95% fluoridation degrees were synthesized through a microwave-assisted precipitation method. The crystal phase, functional groups, surface morphology, and fluoridation degrees of the synthesized powder were determined through X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) Spectroscopy. Thereafter, synthesized fluorhydroxyapatite powder was added to commercial glass ionomer cement (Fuji IX, GC Gold Label) with an amount of 5 wt%, 7.5 wt%, and 10 wt%. The glass ionomer cement which did not undergo fluorhydroxyapatite addition was used as the control group. The microhardness of the cement which has been conditioned for 24 hours in distilled water were evaluated with Vickers Microhardness Tester. Characterization methods revealed that the synthesized powder was nano-sized fluorhydroxyapatite with different degrees of fluoridation. The microhardness of the modified cement after being conditioned for 24 hours exhibited higher values (55-115 HV) compared to the control group (48.94 HV). The results showed that the microhardness of the modified cement would increase to a certain amount of fluorhydroxyapatite addition, and then decreases with further addition. On the other hand, the difference in fluoridation degrees of fluorhydroxyapatite at the addition of the same mass percentage would not produce a significant difference in the microhardness among the modified cement.

1.
R. H.
Selwitz
,
A. I.
Ismail
,
N. B.
Pitts
,
Dental caries. Lancet
369
(
9555
),
51
9
(
2007
).
2.
S. V.
Dorozhkin
,
J Mater Sci Mater Med
,
24
(
6
),
1335
63
(
2013
).
3.
M.
Canillas
,
P.
Pena
,
A. H.
de Aza
,
M. A.
Rodríguez
,
Boletín la Soc Española Cerámica y Vidr
56
(
3
),
91
112
(
2017
).
4.
D. C.
Watts
, “Adhesives And Sealants”, in
Biomaterials Science : An Introduction to Materials in Medicine
,
Elsevier Science & Technology, San Diego, UNITED STATES
,
2012
), pp.
889
904
.
5.
S.
Sidhu
,
J.
Nicholson
,
J Funct Biomater
7
(
3
),
16
(
2016
).
6.
A.
Moshaverinia
,
N.
Roohpour
,
W. W. L.
Chee
,
S. R.
Schricker
,
J Mater Chem
21
(
5
),
1319
28
(
2011
).
7.
S.
Subhadharsini
,
S.
Pradeep
,
Res J Pharm Technol
9
(
9
),
1513
5
(
2016
).
8.
J. W.
Nicholson
,
S. K.
Sidhu
,
B.
Czarnecka
,
Materials (Basel)
13
(
11
),
1
15
(
2020
).
9.
A. S.
Khan
,
M.
Khan
,
I. U.
Rehman
, “Nanoparticles, Properties, and Applications in Glass Ionomer Cements”, in
Nanobiomaterials in Clinical Dentistry
(
Elsevier Inc
,
2012
), pp.
93
108
.
10.
H.
Chen
,
Y.
Liu
, “
Teeth
,” in
Advanced Ceramics for Dentistry
(
2014
), pp.
5
21
.
11.
S.
Dorozhkin
,
Materials (Basel)
2
(
2
),
399
498
(
2009
).
12.
N.
Rameshbabu
,
T. S. S.
Kumar
,
K. P.
Rao
,
Bull Mater Sci
29
(
6
),
611
5
(
2006
).
13.
M.
Wisnugroho
,
Nurlely
,
Y. W.
Sari
,
J Phys Conf Ser
1248
,
12076
(
2019
).
14.
K. J.
Roche
,
K. T.
Stanton
,
J Fluor Chem
161
,
102
9
(
2014
).
15.
Y.
Sa
,
Y.
Guo
,
X.
Feng
,
M.
Wang
,
P.
Li
,
Y.
Gao
,
New J Chem
41
(
13
),
5723
31
(
2017
).
16.
L. M.
Rodríguez-Lorenzo
,
J. N.
Hart
,
K. A.
Gross
,
Biomaterials
24
(
21
),
3777
85
(
2003
).
17.
P.
Nasker
,
M.
Mukherjee
,
S.
Kant
,
S.
Tripathy
,
A.
Sinha
,
M.
Das
,
Ceram Int
44
(
17
),
22008
13
(
2018
).
18.
N. A.
Joseph
,
D.
Mangalaraj
,
S. I.
Hong
,
Y.
Masuda
,
Y. H.
Rhee
,
H. W. Kim
HW
,
Mater Chem Phys
137
(
3
),
967
76
(
2013
).
19.
P.
Nasker
,
A.
Samanta
,
S.
Rudra
,
A.
Sinha
,
A. K.
Mukhopadhyay
,
M.
Das
,
J Mech Behav Biomed Mater
95
,
136
42
(
2019
).
20.
L.
Rintoul
,
E.
Wentrup-Byrne
,
S.
Suzuki
,
L.
Grøndahl
,
J Mater Sci Mater Med
18
(
9
),
1701
9
(
2007
).
21.
A.
Bianco
,
I.
Cacciotti
,
M.
Lombardi
,
L.
Montanaro
,
G.
Gusmano
,
J Therm Anal Calorim
88
(
1
),
237
43
(
2007
).
22.
A.
Ślósarczyk
,
Z.
Paszkiewicz
,
C.
Paluszkiewicz
C,
J Mol Struct
744–747
(SPEC. ISS.),
657
61
(
2005
).
23.
M.
Moshaverinia
,
A.
Borzabadi-farahani
,
A.
Sameni
,
A.
Moshaverinia
,
Dent Mater J
35
(
5
):
817
21
(
2016
).
24.
A. N.
Alobiedy
,
A. H.
Al-Helli
,
A. R.
Al-Hamaoy
,
Ain Shams Eng J
10
(
4
),
785
9
(
2019
).
25.
A.
Moshaverinia
,
S.
Ansari
,
M.
Moshaverinia
,
N.
Roohpour
,
J. A.
Darr
,
I.
Rehman
,
Acta Biomater
4
(
2
),
432
40
(
2008
).
26.
A.
Moshaverinia
,
S.
Ansari
,
Z.
Movasaghi
,
R. W.
Billington
,
J. A.
Darr
,
I. U.
Rehman
,
Dent Mater
24
(
10
),
1381
90
(
2008
).
27.
F.
Barandehfard
,
M. K.
Rad
,
A.
Hosseinnia
,
K.
Khoshroo
,
M.
Tahriri
,
H. E.
Jazayeri
,
Ceram Int
42
(
15
),
17866
75
(
2016
).
28.
I. A.
Rahman
,
N. A. M.
Ghazali
,
W. Z. W.
Bakar
,
S. M.
Masudi
,
Ceram Int
43
(
16
),
13247
53
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.