In this work, we investigate numerically the effects of Soret and Dufour coefficients on heat and mass transfer in a Salt Gradient Solar Pond (SGSP) using the meteorological data of Tangier (Morocco). This SGSP consists of a square cavity filled with a mixture of water and salt. Transfers equations are solved via the finite volume method and the Gauss method. The SIMPLE algorithm is used to link the velocity and pressure fields. The numerical code, we developed in FORTRAN 95, is first validated by applying it to experimental and numerical studies of the literature. Then, we analyze the effects of Soret and Dufour coefficients on heat and mass transfer inside the SGSP. The results show that, during time, heat and mass transfer are not influenced by Soret coefficient. Nevertheless, increasing Dufour coefficient enhance heat and mass transfer inside the SGSP and disrupts its working mechanism.

1.
H.
Xu
,
Z.
Luo
,
Q.
Lou
,
S.
Zhang
, and
J.
Wang
, “Lattice Boltzmann simulations of the double-diffusive natural convection and oscillation characteristics in an enclosure with Soret and Dufour effects,”
Int. J. Therm. Sci.
, Vol.
136
, No.
August 2018, pp.
159
171
,
2019
.
2.
C. Y.
Cheng
, “
Soret and Dufour effects on natural convection heat and mass transfer from a vertical cone in a porous medium
,”
Int. Commun. Heat Mass Transf.
, Vol.
36
, No.
10
, pp.
1020
1024
,
2009
.
3.
M. B. K.
Moorthy
,
T.
Kannan
, and
K.
Senthilvadivu
, “
Soret and dufour effects on natural convection heat and mass transfer flow past a horizontal surface in a porous medium with variable viscosity
,”
WSEAS Trans. Heat Mass Transf.
, Vol.
8
, No.
3
, pp.
121
130
,
2013
.
4.
C. S.
Balla
and
K.
Naikoti
, “
Soret and Dufour effects on free convective heat and solute transfer in fluid saturated inclined porous cavity
,”
Eng. Sci. Technol. an Int. J.
, Vol.
18
, No.
4
, pp.
543
554
,
2015
.
5.
J.
Wang
,
M.
Yang
,
Y. L.
He
, and
Y.
Zhang
, “onset of double-diffusive convection in horizontal cavity with Soret and Dufour effects,”
Int. J. Therm. Sci.
, Vol.
106
, pp.
57
69
,
2016
.
6.
Q.
Liu
,
X. B.
Feng
,
X. T.
Xu
, and
Y. L.
He
, “
Multiple-relaxation-time lattice Boltzmann model for double-diffusive convection with Dufour and Soret effects
,”
Int. J. Heat Mass Transf.
, Vol.
139
, pp.
713
719
,
2019
.
7.
K. R.
Ranjan
and
S. C.
Kaushik
, “
Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review
,”
Renew. Sustain. Energy Rev.
, Vol.
32
, pp.
123
139
,
2014
.
8.
M.
Berkani
,
H.
Sissaoui
,
A.
Abdelli
,
M.
Kermiche
, and
G.
Barker-Read
, “
Comparison of three solar ponds with different salts through bi-dimensional modeling
,”
Sol. Energy
, Vol.
116
, pp.
56
68
,
2015
.
9.
A. A.
Dehghan
,
A.
Movahedi
, and
M.
Mazidi
, “
Experimental investigation of energy and exergy performance of square and circular solar ponds
,”
Sol. Energy
, Vol.
97
, pp.
273
284
,
2013
.
10.
A. H.
Sayer
,
H.
Al-Hussaini
, and
A. N.
Campbell
, “An analytical estimation of salt concentration in the upper and lower convective zones of a salinity gradient solar pond with either a pond with vertical walls or trapezoidal cross section,”
Sol. Energy
, Vol.
158
, No. March, pp.
207
217
,
2017
.
11.
A. H.
Sayer
,
A.
Abbassi
, and
A. N.
Campbell
, “
Behaviour of a salinity gradient solar pond during two years and the impact of zonal thickness variation on its performance
,”
Appl. Therm. Eng.
, Vol.
130
, pp.
1191
1198
,
2018
.
12.
M. M. Ould
Dah
,
M.
Ouni
,
A.
Guizani
, and
A.
Belghith
, “
The influence of the heat extraction mode on the performance and stability of a mini solar pond
,”
Appl. Energy
, Vol.
87
, No.
10
, pp.
3005
3010
,
2010
.
13.
A.
Alcaraz
,
C.
Valderrama
,
J. L.
Cortina
,
A.
Akbarzadeh
, and
A.
Farran
, “
Enhancing the efficiency of solar pond heat extraction by using both lateral and bottom heat exchangers
,”
Sol. Energy
, Vol.
134
, pp.
82
94
,
2016
.
14.
A.
El Mansouri
,
M.
Hasnaoui
,
A.
Amahmid
, and
Y.
Dahani
, “Transient theoretical model for the assessment of three heat exchanger designs in a large-scale salt gradient solar pond: Energy and exergy analysis,”
Energy Convers. Manag.
, Vol.
167
, No. April, pp.
45
62
,
2018
.
15.
F.
Suárez
,
S. W.
Tyler
, and
A. E.
Childress
, “A fully coupled, transient double-diffusive convective model for salt-gradient solar ponds,”
Int. J. Heat Mass Transf.
, Vol.
53
, No.
9–10
, pp.
1718
1730
,
2010
.
16.
R.
Boudhiaf
and
M.
Baccar
, “
Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study
,”
Energy Convers. Manag.
, Vol.
79
, pp.
568
580
,
2014
.
17.
H.
Wang
,
X.
Yu
,
F.
Shen
, and
L.
Zhang
, “
A Laboratory experimental study on effect of porous medium on salt diffusion of salt gradient solar pond
,”
Sol. Energy
, Vol.
122
, pp.
630
639
,
2015
.
18.
A.
El Mansouri
,
M.
Hasnaoui
,
R.
Bennacer
, and
A.
Amahmid
, “Transient thermal performances of a salt gradient solar pond under semi-arid Moroccan climate using a 2D double-diffusive convection model,”
Energy Convers. Manag.
, Vol.
151
, No. May, pp.
199
208
,
2017
.
19.
H.
Wang
,
Q.
Wu
,
Y.
Mei
,
L.
Zhang
, and
S.
Pang
, “
A study on exergetic performance of using porous media in the salt gradient solar pond
,” Vol.
136
, no. January, pp.
301
308
,
2018
.
20.
A.
Rabl
and
C. E.
Nielsen
, “
Solar ponds for space heating
,”
Sol. Energy
, Vol.
17
, No.
1
, pp.
1
12
,
1975
.
21.
K. D.
Stolzenbach
, “
Surface heat loss from cooling ponds
,” Vol.
16
, no.
5
,
1974
.
22.
S.
Patankar
, “
Numerical Heat Transfer and Fluid Flow.
” p.
214
,
1980
.
This content is only available via PDF.
You do not currently have access to this content.