Stroke survivors are typically having locomotion impairments that cause the gait asymmetry and mobility deterioration. The major contributors to this condition are impaired paretic leg and muscle weakness. Researchers put their attention and interest on the rapid development of robotic exosuit and its technology. Such as the actuator becomes more lightweight, using multi-sensors for human and robot interface and controller, a neural or adaptive oscillator for human-machine synchronization and cognitive function in the control of gait and fall prevention. This review paper aims to provide and explain the development of robotic exosuit assistive strategies and technologies that comprise of actuator, sensor as a controller, muscle activity, human-machine interface, and control strategy. The review will focused on the robotic exosuit with purpose to improve walking and gait rehabilitation without the augmentation apparatus for heavy tasks.

1.
P. W.
Duncan
 et al.,
Management of Adult Stroke Rehabilitation Care: a clinical practice guideline.
, vol.
36
, no.
9
.
2005
.
2.
S.
Li
,
G. E.
Francisco
, and
P.
Zhou
, “Post-stroke hemiplegic gait: New perspective and insights,”
Front. Physiol.
, vol.
9
, no. AUG, pp.
1
8
,
2018
.
3.
A.
Manuscript
,
R.
Between
, and
M.
Activity
, “NIH Public Access,” vol.
88
, no.
9
, pp.
1127
1135
,
2008
.
4.
Y. H.
Yin
,
Y. J.
Fan
,
L. D.
Xu
, and
S.
Member
, “EMG and EPP-Integrated Human – Machine Interface Between the Paralyzed and Rehabilitation Exoskeleton,” vol.
16
, no.
4
, pp.
542
549
,
2012
.
5.
V. La
Scaleia
 et al., “Control of leg movements driven by EMG activity of shoulder muscles,”
Front. Hum. Neurosci.
, vol.
8
, no. OCT, pp.
1
9
,
2014
.
6.
J. M.
Hollerbach
,
I. W.
Hunter
, and
J.
Ballantyne
, “
A Comparative Analysis of Actuator Technologies for Robotics
,”
1992
.
7.
J. F.
Veneman
,
R.
Kruidhof
,
E. E. G.
Hekman
,
R.
Ekkelenkamp
,
E. H. F.
Van Asseldonk
, and
H.
Van Der Kooij
, “
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
15
, no.
3
, pp.
379
386
,
2007
.
8.
A. P.
Randomized
and
C.
Trial
, “
Training for Walking Efficiency With a Wearable Hip-Assist Robot in Patients With Stroke A Pilot Randomized Controlled Trial
,” pp.
3545
3552
,
2019
.
9.
Y.
Saito
,
K.
Kikuchi
,
H.
Negoto
,
T.
Oshima
, and
T.
Haneyoshi
, “Development of Externally Powered Lower Limb Orthosis with Bilateral-servo Actuator,”
9th Int. Conf. Rehabil. Robot. 2005. ICORR 2005.
, pp.
394
399
,
2005
.
10.
S. K.
Kawamura
,
Y. H. T.
Sakurai
, and
T. H. Y.
Sankai
, “
Intention-Based Walking Support for Paraplegia Patient
.”
11.
E.
Trigili
 et al., “
Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks
,”
J. Neuroeng. Rehabil.
, vol.
16
, no.
1
, pp.
1
16
,
2019
.
12.
S.
Kyeong
,
W.
Shin
,
M.
Yang
,
U.
Heo
,
J. rou
Feng
, and
J.
Kim
, “
Recognition of walking environments and gait period by surface electromyography
,”
Front. Inf. Technol. Electron. Eng.
, vol.
20
, no.
3
, pp.
342
352
,
2019
.
13.
N.
Kawashima
,
D.
Nozaki
,
M. O.
Abe
,
M.
Akai
, and
K.
Nakazawa
, “
Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons
,”
J. Neurophysiol.
, vol.
93
, no.
2
, pp.
777
785
,
2005
.
14.
C.
Of
,
T. H. E. N.
Leg
, and
N.
Compensatory
, “Hemiparetic Gait : Expected and Novel Compensatory,” vol.
27
, no.
10
, pp.
1023
1030
,
2013
.
15.
R.
Ronsse
,
N.
Vitiello
,
T.
Lenzi
,
J.
Van Den Kieboom
,
M. C.
Carrozza
, and
A. J.
Ijspeert
, “
Human-Robot synchrony: Flexible assistance using adaptive oscillators
,”
IEEE Trans. Biomed. Eng.
, vol.
58
, no.
4
, pp.
1001
1012
,
2011
.
16.
G.
Taga
,
Y.
Yamaguehi
, and
H.
Shimizu
, “Cybernetics,” vol.
159
, pp.
147
159
,
1991
.
17.
Rewalk more than Walking
.” [Online]. Available: https://rewalk.com/rewalk-ushers-in-the-age-of-the-exoskeleton/.
18.
Exoskeleton Made of Carbon Fiber: Technology Leader German Bionic Unveils New Power Suit
.” [Online]. Available: https://www.prnewswire.com/news-releases/exoskeleton-made-of-carbon-fiber-technology-leader-german-bionic-unveils-new-power-suit-301076778.html.
19.
H.
Kawamoto
,
S.
Lee
,
S.
Kanbe
, and
Y.
Sankai
, “
Power assist method for HAL-3 using EMG-based feedback controller
,”
Proc. IEEE Int. Conf. Syst. Man Cybern.
, vol.
2
, pp.
1648
1653
,
2003
.
20.
D. H.
Kim
 et al., “
Epidermal electronics
,”
Science (80-.).
, vol.
333
, no.
6044
, pp.
838
843
,
2011
.
21.
G.
Zeilig
,
H.
Weingarden
,
M.
Zwecker
,
I.
Dudkiewicz
,
A.
Bloch
, and
A.
Esquenazi
, “
Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study
,”
J. Spinal Cord Med.
, vol.
35
, no.
2
, pp.
96
101
,
2012
.
22.
S. A.
Kolakowsky-Hayner
, “
Safety and Feasibility of using the EksoTM Bionic Exoskeleton to Aid Ambulation after Spinal Cord Injury
,”
J. Spine
,
2013
.
23.
A.
Manuscript
, “
Walking in Paraplegic Individuals
,” vol.
17
, no.
1
, pp.
25
33
,
2012
.
24.
J.
Gancet
 et al., “
MINDWALKER: Going one step further with assistive lower limbs exoskeleton for SCI condition subjects
,” vol.
2010
, pp.
1794
1800
,
2012
.
25.
R. J.
Farris
 et al., “A Preliminary Assessment of Legged Mobility Provided by a Lower Limb Exoskeleton for Persons With Paraplegia,” vol.
22
, no.
3
, pp.
482
490
,
2014
.
26.
Y.
Kusuda
, “Feature article In quest of mobility – Honda to develop walking assist devices,” vol.
6
, pp.
537
539
,
2009
.
27.
K. N.
Winfree
,
P.
Stegall
, and
S. K.
Agrawal
, “
Design of a Minimally Constraining, Passively Supported Gait Training Exoskeleton : ALEX II
,” pp.
0
5
,
2011
.
28.
J. E.
Pratt
,
B. T.
Krupp
,
C. J.
Morse
, and
S. H.
Collins
, “The RoboKnee : An Exoskeleton for Enhancing Strength and Endurance During Walking,” no. April, pp.
2430
2435
,
2004
.
29.
P. D.
Neuhaus
,
J. H.
Noorden
,
T. J.
Craig
,
T.
Torres
,
J.
Kirschbaum
, and
J. E.
Pratt
, “
Design and Evaluation of Mina a Robotic Orthosis for Paraplegics
,”
2011
.
30.
ReWalkTM Personal Exoskeleton System Approved By FDA For Home Use
.” [Online]. Available: https://www.meddeviceonline.com/doc/rewalk-personal-exoskeleton-system-fda-home-use-0001.
31.
FDA Clears Parker’s Indego Exoskeleton for Clinical, Personal Use
.” [Online]. Available: https://www.meddeviceonline.com/doc/fda-clears-parker-s-indego-exoskeleton-for-clinical-personal-use-0001.
32.
A.
Manuscript
, “Mason - 2009 - NIH Public Access.pdf,” vol.
28
, no.
11
, pp.
1520
1533
,
2014
.
33.
L.
Wu
,
A.
Zachas
,
R. G.
Harley
,
T. G.
Habetler
, and
D. M.
Divan
, “Design of a portable hand crank generating system to power remote off-grid communities,”
IEEE PES PowerAfrica 2007 Conf. Expo. PowerAfrica
, no. July, pp.
16
20
,
2007
.
This content is only available via PDF.
You do not currently have access to this content.