Magnesium (Mg) alloy reinforced Polylactic acid (PLA) matrix composites have become more widely available to use in biomedical applications. It has been shown that the incorporation of Mg particle in PLA/Mg composites can improve the mechanical properties of the composites. At the same time, the PLA reduces the high degradation rate and H2 release of the Magnesium. The composite film of MgZn-Polylactic acid with Mg:Zn ratio of 5:1, 3:1, and 1:1 using Tetrahydrofuran (THF) and Chloroform as solvent was synthesized. The surface morphology of the synthesized composites film was observed using a scanning electron microscope. The particle dispersion was characterized using energy dispersive x-ray spectroscopy. The mechanical properties of the PLA/Mg composites were determined by a tensile test using a universal testing machine. When the composites contain the highest amount of Mg:Zn ratio, the morphological of the composites become “nugget” like caused by the particle agglomeration. The result obtained from EDS characterization shows that the chloroform solvent was able to disperse the Mg and Zn particle better than THF. The less crystallization happened on the Chloroform solvent composite, showing the better result in the tensile test as the highest average of UTS of the composites was recorded at 5.66 MPa.

1.
S.
Mahdi
,
S.
Babaee
,
Z.
Marashianpour
, and
I.
Kohsari
, “
Stabilizing of magnesium powder by microencapsulation with azidodeoxy cellulose nitrate
,”
Prog. Org. Coatings
, vol.
81
, pp.
107
115
,
2015
.
2.
O. D.
Neikov
and
V. G.
Gopienko
,
Production of Magnesium and Magnesium Alloy Powders
, 2nd ed.
Elsevier Ltd.
,
2019
.
3.
V.
Hernández-montes
,
C. P.
Betancur-henao
, and
J. F.
Santa-marín
, “Titanium dioxide coatings on magnesium alloys for biomaterials : A review,”
DYNA
vol.
84
, no.
200
, pp.
261
270
,
2017
.
4.
E.
Dayaghi
,
H. R.
Bakhsheshi-rad
,
E.
Hamzah
,
A.
Akhavan-farid
,
A. F.
Ismail
, and
M.
Aziz
, “Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application : In vitro cell biology and antibacterial activity assessment,”
Mater. Sci. Eng. C
, vol.
102
, no. May 2018, pp.
53
65
,
2019
.
5.
X.
Zhang
,
X.
Li
,
J.
Li
, and
X.
Sun
, “
Processing, microstructure and mechanical properties of biomedical magnesium with a speci fi c two-layer structure
,”
Prog. Nat. Sci. Mater. Int.
, vol.
23
, no.
2
, pp.
183
189
,
2013
.
6.
H.
Cai
 et al, “Self-reinforced biodegradable Mg-2Zn alloy wires / polylactic acid composite for orthopedic implants,”
Compos. Sci. Technol.
, vol.
162
, no. May, pp.
198
205
,
2018
.
7.
C.
Plaass
 et al, “
Early Results Using a Biodegradable Magnesium Screw for Modified Chevron Osteotomies
,”
Journal of Orthopaedic Research.
, pp.
1
8
,
2016
.
8.
S. C.
Cifuentes
,
R.
Gavilán
,
M.
Lieblich
, and
R.
Benavente
, “
In vitro degradation of biodegradable polylactic acid/magnesium composites: relevance of Mg particle shape
,”
ACTA Biomater.
,
2015
.
9.
S. C.
Cifuentes
,
M.
Lieblich
,
L.
Saldaña
, and
J. L.
González-carrasco
, “Materialia In vitro degradation of biodegradable polylactic acid / Mg composites : Influence of nature and crystalline degree of the polymeric matrix,”
Materialia
, vol.
6
, no. January, p.
100270
,
2019
.
10.
K.
Yu
 et al, “
In vitro corrosion behavior and in vivo biodegradation of biomedical b-Ca 3 (PO 4) 2 / Mg – Zn composites
,”
Acta Biomater.
, vol.
8
, no.
7
, pp.
2845
2855
,
2012
.
11.
M.
Nofar
,
D.
Sacligil
,
P. J.
Carreau
,
M. R.
Kamal
, and
M.
Heuzey
, “
Poly (lactic acid) blends : Processing, properties and applications
,”
Int. J. Biol. Macromol.
, vol.
125
, pp.
307
360
,
2019
.
12.
K.
Hamad
,
M.
Kaseem
,
H. W.
Yang
,
F.
Deri
, and
Y. G.
Ko
, “
Properties and medical applications of polylactic acid: A review
,”
Express Polym. Lett.
, vol.
9
, no.
5
, pp.
435
455
,
2015
.
13.
R. P.
Pawar
,
S. U.
Tekale
,
S. U.
Shisodia
,
J. T.
Totre
, and
A. J.
Domb
, “
Biomedical Applications of Poly(Lactic Acid
),”
Rec. Pat. Regen. Med.
, vol.
4
, pp.
40
51
,
2014
.
14.
H.
Cai
 et al, “
In vitro degradation behavior of Mg wire / poly (lactic acid) composite rods prepared by hot pressing and hot drawing q
,”
Acta Biomater.
, vol.
98
, pp.
125
141
,
2019
.
15.
A.
Ferrández-montero
,
M.
Lieblich
,
J. L.
González-carrasco
,
R.
Benavente
,
V.
Lorenzo
, and
R.
Detsch
, “Development of biocompatible and fully bioabsorbable PLA / Mg films for tissue regeneration applications,” vol.
98
, pp.
114
124
,
2019
.
16.
I.
Yuki
,
A.
Suwamasam
,
I.
Kan
,
M.
Fujimoto
,
F.
Mayor
,
H.
Vinters
,
R.
Kim
,
F.
Vinuela
,
Y.
Murayama
,
B.
Wu
, and
F.
Vinuela
, “
Ultra-thin bio-active polymer coating on the surface of coil materials for brain aneurysm treatment
,”
NeuroIntervent Surg
, pp.
A49
,
2013
.
17.
J.
Seitz
,
R.
Eifler
,
F.
Bach
, and
H. J.
Maier
, “Magnesium degradation products : Effects on tissue and human metabolism,”
J Biomed Mater Res Part A
., pp.
3744
3753
,
2013
.
18.
H.
Salas-Papayanopolos
,
A.B.
Morales-Cepeda
,
S.
Sanchez
,
P.G.
Lafleur
,
I.
Gomez
, “
Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(˪-lactic acid)/glycerol triacetate blends
Poym. Bull.
, pp.
4799
4814
,
2017
.
19.
F. X.
Espinach
,
S.
Boufi
,
F.
Julián
,
P.
Mutjé
, and
J. A.
Méndez
, “
Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties
,”
Compos. Part B
,
2017
.
20.
S. C.
Cifuentes
, “
Processing and characterization of novel biodegradable and bioresobable PLA/Mg composites for osteosynthesis
,” Ph. D Thesis,
Universidad Carlos III de Madrid
,
2015
.
21.
M.
Haghshenas
, “
Mechanical characteristics of biodegradable magnesium matrix composites : A review
,”
J. Magnes. Alloy.
,
2017
.
22.
Z.
Chu
,
T.
Zhao
,
L.
Li
,
J.
Fan
, and
Y.
Qin
, “
Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles
,”
Materials.
,
2017
.
23.
C.
Carrot
,
B.
Olalla
, and
R.
Fulchiron
, “
Relaxation of loose agglomerates of magnesium hydroxide in a polymer melt
,”
Polymer (Guildf).
, vol.
53
, no.
24
, pp.
5560
5567
,
2012
.
24.
S.
Bistac
and
J.
Schultz
, “Solvent retention in solution-cast films of PMMA : study by dielectric spectroscopy,” vol.
31
, pp.
347
350
,
1997
.
25.
Y.
Byun
,
S.
Whiteside
,
R.
Thomas
,
M.
Dharman
,
J.
Hughes
, and
S.
Carolina
, “
The Effect of Solvent Mixture on the Properties of Solvent Cast Polylactic Acid (PLA) Film
,” pp.
13
18
,
2011
.
26.
S.
Selke
,
J.
Culter
,
R.
Henandez
,
Plastics Packaging 2nd Edition.
, chapter 3,
2004
.
27.
S. Y.
Fu
,
X. Q.
Feng
,
B.
Lauke
, and
Y. W.
Mai
, “
Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites
,”
Compos. Part B Eng.
, vol.
39
, no.
6
, pp.
933
961
,
2008
.
28.
S. O.
Adeosun
,
G. I.
Lawal
, and
O. P.
Gbenebor
, “
Characteristics of Biodegradable Implants
,”
J. Miner. Mater. Charact. Eng.
, vol.
02
, no.
02
, pp.
88
106
,
2014
.
This content is only available via PDF.
You do not currently have access to this content.