We study a model of a critical fluid described by the standard φ4 Ginzburg-Landau Hamiltonian and determine the Casimir force in the case of Dirichlet-Dirichlet boundary conditions imposed along the finite dimension of the film. Physically, the fluid can be a simple fluid near its liquid-vapor critical point, or a binary liquid mixture close to the corresponding demixing point. Mathematically, the stable states of the system are determined by the minimizers of the functional which leads to finding the solution of the corresponding Euler-Lagrange nonlinear differential equations under the considered boundary conditions. We solve these equations in terms of Weierstrass and Jacobi elliptic functions and give analytic representation of the Casimir force as a function of both the temperature and ordering field. The derived expressions are then evaluated numerically in the plane of the temperature and the ordering external field.

1.
H. B.
Casimir
,
Proc. K. Ned. Akad. Wet.
51
, p.
793
(
1948
).
2.
V. M.
Mostepanenko
and
N. N.
Trunov
,
The Casimir effect and its applications
(
Energoatomizdat
,
Moscow
,
1990
, in Russian; English version: Clarendon, New York, 1997).
3.
P. W.
Milonni
,
The Quantum Vacuum
(
Academic
,
San Diego
,
1994
).
4.
M.
Kardar
and
R.
Golestanian
,
Rev. Mod. Phys.
71
,
1233
1245
Jul (
1999
)
5.
K. A.
Milton
,
J. Phys. A: Math. Gen.
37
,
R209––R277
(
2004
).
6.
D.
Dalvit
,
P.
Milonni
,
D.
Roberts
, and
F. E.
da Rosa
, eds., Casimir Physics, 1st ed.,
Lecture Notes in Physics, Vol. 834
(
Springer
,
Berlin
,
2011
) p.
460
.
7.
M. E.
Fisher
and
P. G.
de Gennes
,
C. R. Seances Acad. Sci. Paris Ser. B
287
, p.
207
(
1978
).
8.
J. G.
Brankov
,
D. M.
Dantchev
, and
N. S.
Tonchev
,
The Theory of Critical Phenomena in Finite-Size Systems - Scaling and Quantum Effects
(
World Scientific
,
Singapore
,
2000
).
9.
M.
Krech
,
Casimir Effect in Critical Systems
(
World Scientific
,
Singapore
,
1994
).
10.
R.
Evans
,
Liquids at interfaces
, edited by
J. J. J.
Charvolin
and
J.
Zinn-Justin
(
Elsevier
,
Amsterdam
,
1990
).
11.
M. N.
Barber
, in
Phase Transitions and Critical Phenomena, Vol. 8, edited
by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
London
,
1983
) Chap. 2, pp.
146
266
.
12.
D. M.
Dantchev
,
V. M.
Vassilev
, and
P. A.
Djondjorov
,
Journal of Statistical Mechanics: Theory and Experiment
2016
, p.
093209
(
2016
).
13.
C. M.
Rohwer
,
A.
Squarcini
,
O.
Vasilyev
,
S.
Dietrich
, and
M.
Gross
,
Phys. Rev. E
99
,
062103
Jun (
2019
).
This content is only available via PDF.
You do not currently have access to this content.