Cold water pipe (CWP) which is used in ocean thermal energy conversion stationary surface platform should be able to keep water at a temperature of ~5°C, with the result that cold water could be used to liquefy ammonia vapor from a turbine generator to generate electricity. CWP has an inner diameter of about 3m to 4m that reach to 500m water depth. CWP on the stationary platform will experience stresses due to current and wave loads and the weight of the pipe itself. This paper will explain the loading that occurs. Seawater currents generate movement of CWP in the horizontal direction which causes the pipe to be subjected to bending stress. Bending loading fluctuates with different wavelengths and angles each time. In addition, seawater currents lead vortex-induced vibration. The properties of pipe material used should be lightweight, flexible and strength that subjected to wave and current loads. HDPE material is suitable for CWP than other polymeric materials. Because of lightweight and flexible. For the strength, it is filled with short fiberglass in order to withstand low temperature and corrosion. The CWP bending due to seawater current causes the structure of the pipe material to experience repetitive tensile and compressive loading. And due to waves occurs axial tensile load. So that the main load on the CWP is the tension and pull loading that occurs repeatedly or fluctuating in sinusoidal shape and the resistance of the CWP will be more accurately known by fatigue testing alternating load.

1.
Koto
Jaswar
.
International Journal of Environmental Research & Clean Energy
,
4
,
1
7
(
2016
).
2.
Syamsuddin
Mega
L.,
Adli
Attamimi
,
Angga P.
Nugraha
,
Syahrir
Gibran
,
Anisah Q.
Afifah
,
Nindita
Oriana
.,
Energy Procedia
65
,
215
222
(
2015
).
3.
Zhang
Wei
,
Ye
Li
,
Xiaoni
Wu
,
Shihao
Guo
,
Renewable and Sustainble Energy Reviews
,
93
,
231
244
(
2018
).
4.
Ishaq
H.
,
I.
Dincer
, “
A Comparative Evaluation of OTEC, Solar and Wind Energy Based System for Clean Hydrogen Production
,
Journal of Cleaner Production”
, In Press, Corrected Proof, Article 118736 (
2019
).
5.
Yeh
Rong-Hua
,
Tar-Zen
Su
,
Min-Shong
Yang
,
Ocean Engineering
32
,
685
700
(
2005
).
6.
Koto
Jaswar
,
Ridho Bela
Negara
,
Journal of Aeronautical -science and engineering
,
6
,
1
7
(
2016
).
7.
Aletas
Maeva
,
Frederic
Ceffis
,
Pierre
Guerin
, “
Polymer Material Qualification for OTEC/SWAC System
”,
Bardotgroup
(
2016
).
8.
Adiputra
Ristiyanto
,
Tomoaki
Utsunomiya
,
Applied Ocean Research
,
92
, Article 101921 (
2019
).
9.
Miller
Alan
,
Ted
Rosario
,
Matt
Ascari
, “
Selection and Validation of Minimum-Cost Cold Water Pipe Material, Configuration, and Fabrication Method for Ocean thermal Energy Convertion (OTEC) Systems
”,
Lockheed Martin Corporation, Society for Advancement of Material and Process Engineering
(
2012
).
10.
Andrady Anthony
L.
,
1999
, “
Polymer Data Handbook-Poly(vinyl chloride)”
Oxford University Press, Inc
.
11.
Mandelkern
Leo
, and
Rufina G.
Alamo
,
1999
, “
Polymer Data Handbook-Polyethylene, Linear high density”
Oxford University Press, Inc
.
12.
Shelley
Mee
Y.,
1999
, “
Polymer Data Handbook-Polyesthers unsaturated”
Oxford University Press, Inc
.
13.
Bai
Qiang
and
Yong
Bai
,
2014
, “
Flexible Pipe”, Subsea Pipeline Design Analysis and Installation
, Chapter 24, pp.
559
573
.
14.
Risitano
G.
,
E.
Guglielmino
,
D.
Santonocito
,
2018
, “
Evaluation of Mechanical Properties of Polyethylene for Pipes by Energy Approach During Tensile and Fatigue Tests
”,
Precedia Structural Integrity
13
, pp.
1663
1669
.
15.
Gagani
Abedin
I.,
Anna B.
Mosas
,
Andrey E.
Krauklis
,
Andreas T.
Echtermeyer
,
2019
, “
The Effect of Temperature and Water Immersion on The Interlaminar Shear Fatigue of Glass Fiber Epoxy Composites Usng The I-beam Method
”,
Composites Science and Technology
181
,
107703
16.
Fahmie
,
M.
,
J.
Koto
,
A.
Tasri
,
I.
Kamil
,
D.S.
Arief
, and Taufik,
2018
, “
Offshore Ocean Thermal Energy Conversion in Layang-Layang Island, Sabah- Malaysia
,
Journal of Subsea and Offshore -science and engineering-, Vol.
13
(
1
),
14
23
.
17.
Shigley
J.E.
, Budynas-Nisbett,
2006
, “
Mechanical Engineering Design
”, Eighth Edition,
McGraw-Hill Primis
.
18.
Claude
Bathias
,
2006
, “
An Engineering Point of View About Fatigue of Polymer Matrix Composite Materials
”,
International Journal of Fatigue
28
, pp.
1094
1099
.
19.
Bondy
M.
,
W.
Rodgers
,
W.
Altenhof
,
2019
, “
Tensile Fatigue Characterization of Polyamide 66/Carbon Fiber direct/in line compounded long fiber thermoplastic composites
Composites Part B
173
,
106984
20.
Lee Chang
Soon
,
Hee Jun
Kim
,
Auezhan
Amanov
,
Jeong Hwan
Choo
,
Yong Kap
Kim
,
2019
, “
Investigation on Very High Cycle Fatigue of PA66-GF30 GFRP Based on Fiber Orientation
”,
Composites Science and Technology
180
, pp.
94
100
.
21.
May-Pat
Alejandro
,
Alex
Valadez-Gonzales
,
Pedro J.
Herrera-Franco
,
2013
, “
Effect of Fiber Surface Treatments on The essential Work of Fracture of HDPE-continuous Henequen Fiber-Reinforced Composites
”,
Polymer Testing
32
, pp.
1114
1122
.
22.
Tanaka
Keisuke
,
Takuya
kitano
,
Noboru
Egami
,
2014
, “
Effcet of Fiber Orientation on Fatigue Crack Propagaton in Short-Fiber Reinforced Plastics
”,
Engineering Fracture Mechanics.
23.
Zang
Qingfa
,
Yukang
li
,
Hongzhen
Cai
,
Xiaona
Lin
,
Weiming
Yi
,
Jibing
Zhang
,
2018
, “
Properties Comparison of High Density Polyethylene Composites Filled With three Kinds of Shell Fibers
”,
Results in Physics.
24.
Zheng
Xiaotao
,
Xiaohai
Zhang
,
Linwei
Ma
,
Wei
Wang
,
Jiuyang
Yu
,
2019
, “
Mechanical Characterization of Notched high Density Polyethylene (HDPE) pipe: Testing and Prediction
”,
International Journal of Pressure Vesels and Piping
173
, pp.
11
43
.
25.
Qi
Zhengpan
,
Ning
Hu
,
Ziang
Li
,
Danielle
Zeng
,
Xuming
Su
,
2018
, “
A Stress-based Model for Fatigue Life Prediction of High Density Polyethylene under Complicated Loading Conditions
”,
International Journal of Fatigue
26.
Zhao
Yongjian
,
Byoung-Ho
Choi
,
Alexander
Chudnovsky
,
2013
, “
Characterization of the Fatigue Crack Behavior of Pipe Grade Polyethylene Using Circular Nothed Specimens
”,
International Journal of Fatigue
No.
51
, pp.
26
35
.
27.
Koto
Jaswar
,
Ridho Bela
Negara
,
2016
,
Study on Ocean Thermal Energy Conversion in Morotai Island, North Maluku, Indonesia
,
Journal of Aeronautical -science and engineering-
, Vol.
7
, pp.
1
7
.
28.
Koto
Jaswar
,
Ridho Bela
Negara
,
2016
,
Study on Ocean Thermal Energy Conversion in Seram Island, Maluku, Indonesia
,
Journal of Aeronautical -science and engineering-
, Vol.
8
, pp.
1
7
,
29.
Koto
Jaswar
,
Ridho Bela
Negara
,
2017
,
Potential of 100 kW of Ocean Thermal Energy Conversion in Karangkelong, Sulawesi Utara, Indonesia
,
International Journal of Environmental Research & Clean Energy
, Vol.
5
, pp.
1
10
.
30.
Koto
Jaswar
,
Adek
Tasri
,
Insannul
Kamil
,
Dodi Sofyan
Arief
,
2017
,
Potential of Solar-Wind-Ocean Thermal Energy Conversion in Indonesia
,
Ocean and Aerospace Research Institute
, Second Edition, March.
31.
A.K.
Junaidi
,
E.
Afrizal
, and
D.S.
Arief
.
2013
.
Behavior of Subsea Pipelines Expansion under High Pressure and Temperature Design
.
Journal of Ocean, Mechanical and Aerospace -Science and Engineering-
Vol.
1
, pp.
8
11
.
32.
AK
Junaidi
,
Jaswar
Koto
2014
.
Parameters Study of Deep Water Subsea Pipeline Selection
.
Jurnal Teknologi
69
(
7
).
This content is only available via PDF.
You do not currently have access to this content.