The copper oxide (CuO) nanostructures have been successfully synthesized from copper sulfate pentahydrate (CuSO4.5H2O) and NaOH as a stabilizing agent using simple hydrothermal chemical route. The prepared samples were characterized using x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and UV-visible spectroscopy. The x-ray diffraction study of CuO nanostructures shows a monoclinic structure with average crystalline size 22 nm as calculated from the Debye-Scherrer’s equation. The hydrothermal technique used for the synthesis of CuO plays an important role in the formation of rod-like morphology. Optical study of CuO nanostructure facilitated estimation of bandgap to be 1.3 eV. The humidity sensing properties of CuO nanostructure are studied at a room temperature. The maximum sensitivity response was found to be 82.03 % which was stable and reproducible. The CuO nanostructures were successfully demonstrated as good candidate for humidity sensing application.

1.
M.
Zhang
,
K.
Zhang
,
D.
Xu
 et al, “
CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications
(
Progress in Materials Science
,
2014
) vol.
60
, no.
1
, pp.
208
237
,.
2.
Y.
Li
,
J.
Liang
,
Z.
Tao
, and
J.
Chen
, “
CuO particles and plates: synthesis and gas-sensor application
, (
Materials Research Bulletin
,
2008
) vol.
43
, no.
8-9
, pp.
2380
2385
,
3.
M.A.
Dar
,
Y.S.
Kim
,
W.B.
Kim
,
J.M.
Sohn
,
H.S.
Shin
,
Applied Surface Science
254
(
2008
)
7477
7481
4.
D.
Keyson
,
D.P.
Volanti
,
L.S.
Cavalcante
,
A.Z.
Simões
,
J.A.
Varela
,
E.
Longo
, (
Mater. Res. Bull.
2008
)
43
,
771
775
5.
Manmeet
K
,
Muthea
K P
,
Despandeb
S K
, ShipraCh,
Singhd
J B
,
Neetika
V
,
Gupta
S K
,
Yakhmi
J V.
Growth and branching of CuO nanowires by thermal oxidation of copper
. (
J Cryst Growth2011)
289
,
670
675
.
6.
Narongdet
W
,
Piyanut
C
,
Naratip
V
,
Wisanu
P.
Sonochemical Synthesis and Characterization of Copper Oxide Nanoparticles
.(
Energy Procedia
2011
)
29
,
404
409
.
7.
A. A.
Eliseev
,
A.V.
Lukashin
,
A. A.
Vertegel
,
L.I.
Heifets
,
A. I.
Zhirov
,
Y. D.
Tretyakov
, (
Mater. Res. Innov.
,
2000
)
3
,
308
.
8.
K.
Borgohain
,
J.B.
Singh
,
M.V. Rama
Rao
,
T.
Shripathi
,
S.
Mahamuni
, (
Phys. Rev.
,
2000
)
61
,
11093
9.
H.M.
Xiao
,
L.P.
Zhu
,
X.M.
Liu
,
S.Y.
Fu
, (
Solid State Commun.
2007
)
141
431
10.
M.A.
Dar
,
Q.
Ahsanulhaq
,
Y.S.
Kim
c,
J.M.
Sohn
,
W.B.
Kim
,
H.S.
Shin
, (
Applied Surface Science
,
2009
)
255
6279
6284
.
11.
Manyasree
D
,
Kiran Mayi
Peddi
,
Ravikumar
R
Cuo Nanoparticles: Synthesis, Characterization And Their Bactericidal Efficacy
(
International Journal of Applied Pharmaceutics
,
2017
) Vol
9
, Issue
6
,
12.
K.
Kannaki
,
P.S.
Ramesh
and
D.
Geetha
,
Hydrothermal synthesis of CuO Nanostructure and Their Characterizations
, (
International Journal of Scientific & Engineering Research
,
2012
) Volume
3
, Issue
9
,
13.
Y.
Cudennec
and
A.
Lecerf
, “
The transformation of Cu(OH)2 into CuO, revisited
,” (
Solid State Sciences
,
2003
) vol.
5
, no.
11-12
, pp.
1471
1474
,
14.
Thi Ha
Tran
and
Viet Tuyen
Nguyen
,
Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review
, (
International scholarly research notices
2014
)
14
15.
Williardson
R
,
Beer
A.
Optical properties ofIII-V compounds
, (
Academic Press
NewYork
,
1967
) pp.
318
400
.
16.
Wang
,
N.
,
H.
He
, et al (
2010
). "
Room temperature preparation of cuprous oxide hollow microspheres by a facile wet-chemical approach
."
Applied Surface Science
256
(
23
):
7335
7338
.
This content is only available via PDF.
You do not currently have access to this content.