Herein, dye sensitized solar cell (DSSC) application of precipitation assisted-hydrothermally derived TiO2 nanostructures is realized through extensive analysis. The TiO2 nanostructures are derived by precipitation reaction of titanium tetra-isopropoxide (TTIP) followed by annealing of resultant precipitate at 300°C and then hydrothermal reaction of as-annealed precipitate in alkaline media at 120, 130, 140 and 150 °C for 24 hr. The resultant nano-structured powders are examined by XRD, UV-Visible spectroscopy and FESEM. The material characterization of as-derived nanostructured powders revealed the crystallization of phase pure TiO2 nanostructures like nanoparticles (NPs), nanochains (NCs) and nanotubes (NTs) with anatase symmetry. The N719 sensitized solar cells are fabricated by using photoanodes prepared with as-derived TiO2 nano-structured powders and electrolyte solution (0.05 M iodine, 0.5 M LiI, and 0.5 M 4-tertbutylpyridinein 3-methoxypropionitrile). The DSSC characteristics are obtained by using solar simulator under illumination of as-fabricated cells with light of AM 1.5 (100 mWcm-2) intensity. The photoconversion efficiency is found to be increasing from 1.10 to 3.06 % by changing the morphological features from nanoparticles (NPs) to nanotubes (NTs). The profound effect of change in morphology of TiO2 based photoanode on photoconversion efficiency is found.

1.
B.
O’Regan
and
M.
Gratzel
,
Nature
353
,
737
740
(
1991
).
2.
Q.
Zhang
and
G.
Cao
,
Nano Today
6
,
91
109
(
2011
).
3.
S. A.
Arote
,
R. V.
Ingle
,
V. A.
Tabhane
and
H. M.
Pathan
,
J. Ren. Sustain. Ener.
6
,
013132
(
2014
).
4.
Y.
Inamdar
,
N.
Beedri
,
K.
Kodam
,
A.
Shaikh
and
H.
Pathan
,
Macromolecular Symposia
347
,
52
57
(
2015
).
5.
H.
Abdullah
,
S.
Mahalingam
,
A.
Omar
,
R. M. S.
Shaari
,
I.
Asshaari
,
Adv. Mater. Res.
911
,
266
270
(
2014
).
6.
R. S.
Mane
,
H. M.
Pathan
,
C. D.
Lokhande
,
Sung-Hwan
Han
,
Solar Energy
80
,
190
198
(
2006
).
7.
S. A. A. R.
Sayyed
,
N. I.
Beedri
,
V. S.
Kadam
and
H.M.
Pathan
,
Appl. Nanosci.
6
,
875
881
(
2016
).
8.
A.
Hagfeldt
and
M.
Grätzel
,
J. Chem. Rev.
95
,
49
68
(
1995
).
9.
X.
Chen
, and
S. S.
Mao
,
Chem. Rev.
107
,
2891
2959
(
2007
).
10.
H. S.
Jung
,
H.
Shin
,
J. R.
Kim
,
J. Y.
Kim
,
K. S.
Hong
and
J. K.
Lee
,
Langmuir
20
,
11732
11735
(
2004
).
11.
K. C.
Sun
,
M. B.
Qadir
and
S. H.
Jeong
,
RSC Adv.
4
,
23223
(
2014
).
12.
Z.
Wang
,
Y.
Tang
,
M.
Li
,
Y.
Zhu
,
M.
Li
,
L.
Bai
,
M.
Luoshan
,
W.
Lei
and
X.
Zhao
,
J. Alloys & Comp.
714
,
89
95
(
2017
).
13.
M.
Myahkostupov
,
M.
Zamkov
and
F. N.
Castellano
,
Energy Environ. Sci.
4
,
998
1010
(
2011
).
14.
G. K. R.
Senadeera
,
C. A.
Thotawatthage
, and
M. A. K. L.
Dissanayake
,
J. Phys.: Conf. Ser.
1552
,
012002
(
2020
).
15.
M.
Jeng
,
Yi-Lun
Wung
,
Liann-Be
Chang
and
L.
Chow
,
Inter. J. Photoenergy
2013
,
1
8
(
2013
).
16.
C. H.
Lee
,
S. W.
Rhee
and
H. W.
Choi
,
Nanoscale Res. Lett.
7
,
48
(
2012
).
17.
G.
Arthi
,
J.
Archana
,
M.
Navaneethan
,
S.
Ponnusamy
,
Y.
Hayakawa
and
C.
Muthamizhchelvan
,
Inter. J. Chem. Tech. Res.
7
(
3
),
1563
1568
(
2014
).
18.
X.
Yu
,
H.
Wang
,
Y.
Liu
,
X.
Zhou
,
B.
Li
,
L.
Xin
,
Y.
Zhou
and
H.
Shen
,
J. Mater. Chem. A
,
1
,
2110
2117
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.