In the present study nanocrystalline Cu2Sn(S,Se)3 thin film have been synthesized at room temperature by simple arrested precipitation technique (APT) via controlled release of ions from metal complex solution and used as photocathode for photoelectrochemical (PEC) cell application. The physico-chemical and optoelectronic performance of synthesized Cu2Sn(S,Se)3 thin film have been studied thoroughly. A direct allowed transition with optical band gap 1.73 eV was observed for Cu2Sn(S,Se)3 thin film. X-ray diffraction (XRD) studies verified that Cu2Sn(S,Se)3 crystallize in cubic crystal structure. The grain size calculated using Scherre’s equation was obtained to be 32 nm. Field emission scanning electron microscopy (FESEM) studies depicted nanospherical formation. The elemental analysis confirmed the presence of Cu, Sn, S and Se elements in the synthesized thin film. A photoconversion efficiency of bare Cu2Sn(S,Se)3 photocathode was tested using two electrode cell configuration. A PEC efficiency of 0.13 % was obtained using cell configuration glass/FTO/Cu2Sn(S,Se)3/(I-/I3-)/graphite.

1.
P.
Jackson
,
D.
Hariskos
,
E.
Lotter
,
S.
Paetel
,
R.
Wuerz
,
R.
Menner
,
W.
Wischmann
, and
M.
Powalla
,
Prog. Photovoltaics
19
,
894
897
(
2011
).
2.
S.
Gupta
,
T.
Whittles
,
T.
Whittles
,
Y.
Batra
,
V.
Satsangi
,
S.
Krishnamurthy
,
V.
Dhanak
,
B.
Mahta
,
Sol. Energy Mater. Sol. Cells
157
,
820
830
(
2016
).
3.
T.
Todorov
,
J.
Tang
,
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
,
D.
Mitzi
,
Advanced Energy Materials
3
,
34
38
(
2013
).
4.
J.
Kim
,
J.
Lee
,
J.
Jang
,
M.
He
,
W.
Jeong
,
M.
Suryawanshi
,
J
,
Yun
,
D.
Lee
,
J.
Kim
,
Sol. Energy Mater. Sol. Cells
172
,
154
-
159
(
2017
).
5.
M.
Zeleke
,
D.
Kuo
,
O.
Zelekew
,
A.
Saragih
,
J. Solid State Chem.
255
,
1
7
(
2017
).
6.
Q.
Liang
,
L.
Han
,
X.
Deng
,
C.
Yao
,
J.
Meng
,
X.
Liu
,
J. Meng, CrystEngComm
16
,
4001
4007
(
2014
).
7.
Y.
Dong
,
J.
He
,
J.
Tao
,
L.
Sun
,
P.
Yang
,
J.
Chu
,
J Mater Sci: Mater Electron
26
,
6723
6729
(
2015
).
8.
T.
Nomura
,
T.
Maeda
,
K.
Takei
,
M.
Morihama
,
T.
Wada
,
Phys. Status Solidi C
10
,
1093
1097
(
2013
).
9.
T.
Vetter
,
M.
Iggland
,
D.
Ochsenbein
,
F.
Hanseler
,
M.
Mazzotti
,
Cryst Growth Des.
13
,
4890
4905
(
2013
).
10.
S. D.
Kharade
,
N. B.
Pawar
,
S. S.
Mali
,
C. K.
Hong
,
P. N.
Bhosale
,
AIP Conference Proceedings
1989
,
020018
(
2018
).
11.
M. P.
Joshi
,
K. V.
Khot
,
S. S.
Patil
,
S. S.
Mali
,
C. K.
Hong
,
P. N.
Bhosale
,
Mater. Res. Express
6
,
086467
(
2019
).
12.
X.
Zheng
,
Y.
Liu
,
Y.
Sun
,
Q.
Li
,
R.
Zhang
,
J.
Hou
,
N.
Zhang
,
G.
Zhao
,
Y.
Fang
,
N.
Dai
,
J. Alloys Compd.
728
,
322
327
(
2017
).
13.
M. P.
Joshi
,
K. V.
Khot
,
V. B.
Ghanwat
,
S. D.
Kharade
,
C. S.
Bagade
,
N. D.
Desai
,
S. S.
Patil
,
P. N.
Bhosale
,
AIP Conference Proceedings
1989
,
020015
(
2018
).
14.
S. A.
Vanalakar
,
M. P.
Suryawanshi
,
S. S.
Mali
,
A. V.
Moholkar
,
J. Y.
Kim
,
P. S.
Patil
,
J. H.
Kim
,
Curr. Appl. Phys.
14
,
1669
1676
(
2014
).
15.
M. P
Joshi
,
P. N. Bhosale, Mater. Lett.
255
,
126526
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.