This paper describes the surfactant-assisted synthesis of ZnSe nanoparticles by the hydrothermal method. In this route, zinc salt, sodium selenite (Na2SeO3) are used as zinc and selenium precursors. The reaction is performed in the presence of 0.1 M cetyl trimethyl ammonium bromide (CTAB) as a surfactant and hydrazine hydrate (N2H4.H2O) as a reducing agent. The effect of change in zinc salt on size, morphology and optical properties of ZnSe nanocrystals have been investigated by performing the reaction at 150 °C for 8hrs. The phase structures, morphologies and optical properties of synthesized ZnSe nanoparticles were characterized by using X-ray diffraction (XRD), Ultraviolet-visible spectroscopy (UV-vis), Field emission scanning electron microscopy (FESEM), Photoluminescence (PL) spectroscopy and Time-resolved photoluminescence spectroscopy (TRPL). The XRD analysis shows a successful synthesis of small-sized (8-11 nm) crystalline ZnSe nanoparticles. Zinc acetate has been found to be the favourable source of zinc for the synthesis of pure ZnSe nanoparticles under mentioned reaction conditions. In this study, it has been found that the Zn source used during the reaction has a considerable effect on structural, morphological, and optical properties of synthesized ZnSe nanoparticles. Investigations done in the presented work can be helpful for the controlled morphological synthesis of ZnSe nanoparticles with better purity for various applications.

1.
R.
Rujkorakarmn
,
A. J.
Nelson
,
J. Appl. Phys.
87
,
8557
8560
(
2000
).
2.
A.
Sobhani
,
M.
Salavati-Niasari
,
J. Mater. Sci.: Mater. Electron.
27
,
293
303
(
2016
).
3.
Q.
Zhang
,
H.
Li
,
Y.
Ma
,
T.
Zhai
,
Prog. Mater. Sci.
83
,
472
535
(
2016
).
4.
S. K.
Hong
,
E.
Kurts
,
J. H.
Chang
,
T.
Hanada
,
M.
Oku
,
T.
Yao
,
Appl. Phys. Lett.
78
,
165
167
(
2001
).
5.
H.
Jeon
,
J.
Ding
,
W.
Patterson
,
A.V.
Nurmikko
,
W.
Xie
,
D. C.
Grillo
,
M.
Kobayashi
,
R. L.
Gunshor
,
Appl. Phys. Lett.
59
,
3619
3621
(
1991
).
6.
S.
Florence
,
R.
John
,
L.
Arockiasamy
,
M.
Umadevi
,
Mater. Lett.
86
,
129
131
(
2012
).
7.
S. K.
Mehta
,
S.
Kumar
,
S.
Chaudhary
,
K. K.
Bhasin
,
G.
Michael
.,
Nano. Res. Lett.
4
,
17
28
(
2009
).
8.
A.
Sobhani
,
M.
Salavati-Niasari
,
J. Mater. Sci.: Mater. Electron.
26
,
6831
6836
(
2015
).
9.
M.
Inoue
,
I.
Hirasawa
,
J. Cryst. Growth
380
,
169
175
(
2013
).
10.
D.-J.
Kim
and
K.-K.
Koo
,
Cryst. Growth Des.
9
,
1153
1157
(
2009
).
11.
L.
Peng
,
Y.
Wang
,
Q.
Dong
and
Z.
Wang
,
Nanomicro Lett.
,
2
,
190
196
(
2010
).
12.
P.
Kubelka
,
F. Z.
Munk
,
Tech. Phys.
12
,
593
601
(
1931
).
13.
A. E.
Morales
,
E. S.
Mora
, and
U.
Pal
,
Revista Mexicana De Fisica
S53
,
18
22
(
2007
).
14.
Y. L.
Duan
,
S.
Yao
,
C.
Dai
,
X.
Liu
,
G.
Xu
,
Trans. Nonferrous Met. Soc. China
24
,
2588
2597
(
2014
).
15.
S.
Gharibe
,
S.
Afshar
and
L.
Vafayi
,
Bull. Chem. Soc. Ethiop.
28
,
37
44
(
2014
).
16.
U. B.
Memon
,
U.
Chatterjee
,
M. N.
Gandhi
,
S.
Tiwari
,
S. P.
Duttagupta
,
Procedia Materials Science
5
1027
1033
(
2014
). doi:
17.
Huaqiang
Cao
 et al,
Nanotechnology
22
,
015604
(
2010
).
18.
J.
Wang
J,
Q.
Yang
,
Cryst. Growth Des.
8
,
660
(
2008
).
19.
J.
Yang
,
C.
Xue
,
S. H.
Yue
,
J. H.
Zeng
and
Y.T.
Quan
,
Angew Chem. Inte. Edn
,
41
,
4697
(
2002
).
20.
Chao
Zhang
,
Tingting
Li
,
Lei
Pu
,
Weijia
Wen
,
Xiangdong
Luo
,
Lijuan
Zhao
,
Chinese Chem. Lett.
31
(
9
),
2499
2502
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.