In this study, the first order of accuracy difference scheme for approximate solution of source identification elliptic problem with integral and second kind boundary conditions is considered. Stability and coercive stability estimates for solution of the difference scheme are described. Moreover, test example with computation results is given.
REFERENCES
1.
A.
Ashyralyev
and C.
Ashyralyyev
, Nonlinear Anal. Model. Control
19
(3
), 350
–366
(2014
).2.
A.
Ashyralyev
and F.
Emharab
, Bulletin of the Karaganda University-Mathematics
91
, 89
–98
(2018
).3.
A.
Ashyralyev
and F.
Emharab
, J. Inverse Ill-Posed Probl.
27
(3
), 301
–315
(2019
).4.
A.
Ashyralyev
, A.S.
Erdogan
, and A.U.
Sazaklioglu
, J. Inverse Ill-Posed Probl.
27
(4
), 457
–4685
(2019
).5.
C.
Ashyralyyev
, AIP Conference Proceedings
, 1611
46
–52
(2014
).6.
C.
Ashyralyyev
, Filomat
31
:4
, 967
–980
(2017
).7.
C.
Ashyralyyev
, Numer. Funct. Anal. Optim.
38
:10
, 1226
–1243
(2017
).8.
9.
C.
Ashyralyyev
and G.
Akyuz
, Filomat
32
:3
, 859
–872
(2018
).10.
C.
Ashyralyyev
and A.
Cay
, AIP Conference Proceedings
1997
, 020026
(2018
).11.
C.
Ashyralyyev
, G.
Akyuz
, and M.
Dedeturk
, Electron. J. Dierential Equations
2017
(197
), 1
–16
(2017
).12.
M.
Ashyralyyeva
and M.
Ashyraliyev
, Bulletin of the Karaganda University-Mathematics
91
, 69
–74
(2018
).13.
M.
Dehghan
, Appl. Numer. Math.
37
(2001
).14.
Y.
Eidelman
, Mathematical Notes
49
(5-6
), 535
–540
(1991
).15.
V.
Iskakov
, Inverse Problems for Partial Differential Equations
(Springer
, USA
, 2006
).16.
S.
Kabanikhin
, Inverse and Ill-Posed Problems: Theory and Applications
(deGruyter
, Berlin, Germany
, 2011
).17.
S.
Kabanikhin
and M.
Shishlenin
, J. Inverse Ill-Posed Probl.
27
(3
), 453
–456
(2019
).18.
F.
Kanca
and Y.T.
Mehraliyev
, Mathematical Modelling and Analysis
19
(2
), 241
–256
(2014
).19.
A.I.
Prilepko
, D.G.
Orlovsky
, and I.A.
Vasin
, Methods for Solving Inverse Problems in Mathematical Physics
(Marcel Dekker
, New York
, 2000
).20.
D.
Orlovsky
and S.
Piskarev
, J. Math. Sci.
230
(6
), 824
–906
(2018
).21.
A.
Samarskii
and P.
Vabishchevich
, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse and Ill-Posed Problems Series
(Walter de Gruyter
, Berlin, New York
, 2007
).22.
A.
Ashyralyev
and P. E.
Sobolevskii
, New Difference Schemes for Partial Differential Equations
(Birkhäuser Verlag
, Basel, Boston, Berlin
, 2004
).23.
24.
P.
Sobolevskii
, Difference Methods for the Approximate Solution of Differential Equations
(Voronezh State University Press
, Voronezh, Russia
, 1975
).
This content is only available via PDF.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.