In this study, the first order of accuracy difference scheme for approximate solution of source identification elliptic problem with integral and second kind boundary conditions is considered. Stability and coercive stability estimates for solution of the difference scheme are described. Moreover, test example with computation results is given.

1.
A.
Ashyralyev
and
C.
Ashyralyyev
,
Nonlinear Anal. Model. Control
19
(
3
),
350
366
(
2014
).
2.
A.
Ashyralyev
and
F.
Emharab
,
Bulletin of the Karaganda University-Mathematics
91
,
89
98
(
2018
).
3.
A.
Ashyralyev
and
F.
Emharab
,
J. Inverse Ill-Posed Probl.
27
(
3
),
301
315
(
2019
).
4.
A.
Ashyralyev
,
A.S.
Erdogan
, and
A.U.
Sazaklioglu
,
J. Inverse Ill-Posed Probl.
27
(
4
),
457
4685
(
2019
).
5.
C.
Ashyralyyev
,
AIP Conference Proceedings
,
1611
46
52
(
2014
).
6.
C.
Ashyralyyev
,
Filomat
31
:
4
,
967
980
(
2017
).
7.
C.
Ashyralyyev
,
Numer. Funct. Anal. Optim.
38
:
10
,
1226
1243
(
2017
).
8.
C.
Ashyralyyev
,
Bound. Value Probl.
2017
:
74
,
1
22
(
2017
).
9.
C.
Ashyralyyev
and
G.
Akyuz
,
Filomat
32
:
3
,
859
872
(
2018
).
10.
C.
Ashyralyyev
and
A.
Cay
,
AIP Conference Proceedings
1997
,
020026
(
2018
).
11.
C.
Ashyralyyev
,
G.
Akyuz
, and
M.
Dedeturk
,
Electron. J. Dierential Equations
2017
(
197
),
1
16
(
2017
).
12.
M.
Ashyralyyeva
and
M.
Ashyraliyev
,
Bulletin of the Karaganda University-Mathematics
91
,
69
74
(
2018
).
13.
M.
Dehghan
,
Appl. Numer. Math.
37
(
2001
).
14.
Y.
Eidelman
,
Mathematical Notes
49
(
5-6
),
535
540
(
1991
).
15.
V.
Iskakov
,
Inverse Problems for Partial Differential Equations
(
Springer
,
USA
,
2006
).
16.
S.
Kabanikhin
,
Inverse and Ill-Posed Problems: Theory and Applications
(
deGruyter
,
Berlin, Germany
,
2011
).
17.
S.
Kabanikhin
and
M.
Shishlenin
,
J. Inverse Ill-Posed Probl.
27
(
3
),
453
456
(
2019
).
18.
F.
Kanca
and
Y.T.
Mehraliyev
,
Mathematical Modelling and Analysis
19
(
2
),
241
256
(
2014
).
19.
A.I.
Prilepko
,
D.G.
Orlovsky
, and
I.A.
Vasin
,
Methods for Solving Inverse Problems in Mathematical Physics
(
Marcel Dekker
,
New York
,
2000
).
20.
D.
Orlovsky
and
S.
Piskarev
,
J. Math. Sci.
230
(
6
),
824
906
(
2018
).
21.
A.
Samarskii
and
P.
Vabishchevich
,
Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse and Ill-Posed Problems Series
(
Walter de Gruyter
,
Berlin, New York
,
2007
).
22.
A.
Ashyralyev
and
P. E.
Sobolevskii
,
New Difference Schemes for Partial Differential Equations
(
Birkhäuser Verlag
,
Basel, Boston, Berlin
,
2004
).
23.
A.
Samarskii
,
The Theory of Difference Schemes
(
Dekker
,
New York
,
2007
).
24.
P.
Sobolevskii
,
Difference Methods for the Approximate Solution of Differential Equations
(
Voronezh State University Press
,
Voronezh, Russia
,
1975
).
This content is only available via PDF.
You do not currently have access to this content.