In the present paper, the new absolute stable difference schemes for the numerical solution of the one dimensional parabolic partial differential equation with time involution are investigated. For first and second order of accuracy difference schemes new algorithm is proposed, test example is solved, and numerical results are presented. Comparisons of errors are made between the exact and numerical solutions in maximum norm. Computer calculations was carried out in Matlab.

1.
A.
Ashyralyev
and
A. M.
Sarsenbi
,
Electron. J. Differential Equations
2015
(
284
),
1
8
(
2015
).
2.
H.
Amann
,
J. Funct. Anal.
78
,
233
270
(
1988
).
3.
J.
Yong
and
L.
Pan
,
J. Austral. Math. Soc.
54
,
174
203
(
1993
).
4.
A.
Ashyralyev
and
A. M.
Sarsenbi
,
Numer. Funct. Anal. Optim.
38
(
10
),
1295
1304
(
2017
).
5.
J.
Wiener
,
Generalized Solutions of Functional Differential Equations
(
World Scientific
,
Singapore
,
1993
).
6.
A.
Ashyralyev
,
B.
Karabaeva
, and
A.M.
Sarsenbi
,
AIP Conference Proceedings
1759
,
020111
(
2016
).
7.
A.
Sarsenbi
, Ph.D. Thesis,
South Kazakhstan State University
,
Kazakhstan
(
2019
).
8.
G.
Di Blasio
,
Adv. Differential Equations
6
(
4
),
481
512
(
2001
).
9.
A.
Ashyralyev
and
A. M. Saeed
Ahmed
,
AIP Conference Proceedings
,
2183
,
070010
(
2019
).
10.
X.
Lu
,
Appl. Math. Comput.
89
,
213
224
(
1998
).
11.
A.
Ashyralyev
and
D.
Agirseven
,
Electron. J. Differential Equations
2014
(
160
),
1
13
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.