In this work we have considered a Mayer type problem governed by a discrete inclusion system with Lipschitzian set-valued mappings. A necessary condition for K-optimal solutions of the problem is given via local approximations which is considered the lower and upper tangent cones of a set and the lower derivative of the set-valued mappings.
Topics
Optimization problems
REFERENCES
1.
E. N.
Mahmudov
, “Optimization of Mayer problem with Sturm-Liouville-type differential inclusions
”, Journal of Optimization Theory and Applications
, 177
, 345
–375
, (2018
).2.
E. N.
Mahmudov
and Ö.
Deǧer
, “On an optimization problem described by multivalued mappings and dual-ity
”, Appl. Comput. Math.
, 4
, no. 2
, 192
–199
, (2005
).3.
E. N.
Mahmudov
and Ö.
Deǧer
, “Necessary and sufficient conditions for optimality in discrete inclusions described by convex multivalued mappings and duality
”, İstanb. Ü niv. Fen Fak. Mat. Fiz. Astron. Derg. (N.S.
) 1
, 105
–114
, (2006
).4.
E. N.
Mahmudov
, “Transversality condition and optimization of higher order ordinary differential inclusions
”, Optimization: A Journal of Mathematical Programming and Operations Research
, Vol. 64
, No. 10
, pp. 2131
–2144
, (2015
).5.
E. N.
Mahmudov
, “Mathematical programming and polyhedral optimization of second order discrete and differential inclusions
”, Pacific Journal of Optimization
, Vol. 11
, No. 3
, pp., 495
–525
, (2015
).6.
E. N.
Mahmudov
, “Approximation and optimization of higher order discrete and differential inclusions
”, Nonlinear Differential Equations and Applications NoDEA
, Volume 21
, Issue 1
, pp.1
–26
, (2014
).7.
E. N.
Mahmudov
, S.
Demir
and Ö.
Deǧer
, “Optimization of third-order discrete and differential inclusions described by polyhedral set-valued mappings
”, Applicable Analysis
, 95
, 1831
–1844
, (2016
).8.
G.
Çiçek
and E.N.
Mahmudov
, “The problem of Mayer for discrete and differential inclusions with initial boundary constraints
”, Applied Mathematics & Information Sciences
, 10
(5
), 1719
–1728
, (2016
).9.
H.
Frankowska
and N. P.
Osmolovskii
, “Second-order necessary optimality conditions for the mayer problem subject to a general control constraint
”, Bettiol
, P.
, Cannarsa
, P.
, Colombo
, G.
, Motta
, M.
, Rampazzo
, F.
(Eds.), Analysis and Geometry in Control Theory and its Applications
, Springer Verlag
, 12
, (2015
).10.
J.-P.
Aubin
and A.
Cellina
, Differential Inclusions. Set-Valued Maps and Viability Theory
. Grundlehren Math. Wiss.
, vol. 264
, Springer-Verlag
, Berlin
(1984
).11.
R. T.
Rockafellar
, Convex Analysis
, Princeton Univ. Press
, Princeton
, (1970
).12.
B. N.
Pshenichnyi
, Convex Analysis and Extremal Problems (Russian)
, Nauka
, Moscow
, (1980
).13.
G. Y.
Chen
and J.
Jahn
, Optimality conditions for set-valued optimization problems. Set-valued optimization
. Math. Methods Oper. Res.
48
, 187200
, (1998
).14.
E. N.
Mahmudov
, Approximation and Optimization of Discrete and Differential Inclusions
, Elsevier
, (2011
).15.
B. S.
Mordukhovich
, Variational Analysis and Generalized Differentiation I, Basic Theory, Grundlehren der Mathematischen Wissenschaften
330
, Springer-Verlag
, Berlin
, (2006
).16.
This content is only available via PDF.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.