In this work we have considered a Mayer type problem governed by a discrete inclusion system with Lipschitzian set-valued mappings. A necessary condition for K-optimal solutions of the problem is given via local approximations which is considered the lower and upper tangent cones of a set and the lower derivative of the set-valued mappings.

1.
E. N.
Mahmudov
, “
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions
”,
Journal of Optimization Theory and Applications
,
177
,
345
375
, (
2018
).
2.
E. N.
Mahmudov
and
Ö.
Deǧer
, “
On an optimization problem described by multivalued mappings and dual-ity
”,
Appl. Comput. Math.
,
4
, no.
2
,
192
199
, (
2005
).
3.
E. N.
Mahmudov
and
Ö.
Deǧer
, “
Necessary and sufficient conditions for optimality in discrete inclusions described by convex multivalued mappings and duality
”,
İstanb. Ü niv. Fen Fak. Mat. Fiz. Astron. Derg. (N.S.
)
1
,
105
114
, (
2006
).
4.
E. N.
Mahmudov
, “
Transversality condition and optimization of higher order ordinary differential inclusions
”,
Optimization: A Journal of Mathematical Programming and Operations Research
, Vol.
64
, No.
10
, pp.
2131
2144
, (
2015
).
5.
E. N.
Mahmudov
, “
Mathematical programming and polyhedral optimization of second order discrete and differential inclusions
”,
Pacific Journal of Optimization
, Vol.
11
, No.
3
, pp.,
495
525
, (
2015
).
6.
E. N.
Mahmudov
, “
Approximation and optimization of higher order discrete and differential inclusions
”,
Nonlinear Differential Equations and Applications NoDEA
, Volume
21
, Issue
1
, pp.
1
26
, (
2014
).
7.
E. N.
Mahmudov
,
S.
Demir
and
Ö.
Deǧer
, “
Optimization of third-order discrete and differential inclusions described by polyhedral set-valued mappings
”,
Applicable Analysis
,
95
,
1831
1844
, (
2016
).
8.
G.
Çiçek
and
E.N.
Mahmudov
, “
The problem of Mayer for discrete and differential inclusions with initial boundary constraints
”,
Applied Mathematics & Information Sciences
,
10
(
5
),
1719
1728
, (
2016
).
9.
H.
Frankowska
and
N. P.
Osmolovskii
, “
Second-order necessary optimality conditions for the mayer problem subject to a general control constraint
”,
Bettiol
,
P.
,
Cannarsa
,
P.
,
Colombo
,
G.
,
Motta
,
M.
,
Rampazzo
,
F.
(Eds.),
Analysis and Geometry in Control Theory and its Applications
,
Springer Verlag
,
12
, (
2015
).
10.
J.-P.
Aubin
and
A.
Cellina
,
Differential Inclusions. Set-Valued Maps and Viability Theory
.
Grundlehren Math. Wiss.
, vol.
264
,
Springer-Verlag
,
Berlin
(
1984
).
11.
R. T.
Rockafellar
,
Convex Analysis
,
Princeton Univ. Press
,
Princeton
, (
1970
).
12.
B. N.
Pshenichnyi
,
Convex Analysis and Extremal Problems (Russian)
,
Nauka
,
Moscow
, (
1980
).
13.
G. Y.
Chen
and
J.
Jahn
,
Optimality conditions for set-valued optimization problems. Set-valued optimization
.
Math. Methods Oper. Res.
48
,
187200
, (
1998
).
14.
E. N.
Mahmudov
,
Approximation and Optimization of Discrete and Differential Inclusions
,
Elsevier
, (
2011
).
15.
B. S.
Mordukhovich
,
Variational Analysis and Generalized Differentiation I, Basic Theory, Grundlehren der Mathematischen Wissenschaften
330
,
Springer-Verlag
,
Berlin
, (
2006
).
16.
J. -P.
Aubin
and
H.
Frankowska
,
Set-Valued Analysis, Boston
, (
1990
).
This content is only available via PDF.
You do not currently have access to this content.