It is well known that for a Hausdorff topological group X, the limits of convergent sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This notion has been modified by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences. Recently some authors have extended the concept to the topological group setting and introduced the concepts of G- continuity, G-compactness and G-connectedness. In this paper we prove some results about G-compactness for topological group with operations which include topological groups, topological rings without identity, R-modules, Lie algebras, Jordan algebras, and many others.

1.
H.F.
Akiz
,
N.
Alemdar
,
O.
Mucuk
and
T.
Şahan
,
Coverings of internal groupoids and crossed modules in the category of groups with operations
,
Georgian Math. J.
20
:
2
,
223
238
(
2013
).
2.
J.
Antoni
,
On the A-continuity of real functions II
,
Math. Slovaca
36
:
3
,
283
287
(
1986
).
3.
J.
Antoni
and
T.
Salat
,
On the A-continuity of real functions
,
Acta Math. Univ. Comenian.
39
,
159
164
(
1980
).
4.
J.
Boos
, Classical and Modern Methods in Summability,
Oxford Univ. Press
,
Oxford
,
2000
.
5.
J.
Borsik
and
T.
Salat
,
On
F-continuity of real functions, Tatra Mt. Math. Publ.
2
,
37
42
(
1993
).
6.
R.
Brown
and
O.
Mucuk
,
Covering groups of non-connected topological groups revisited
,
Math. Proc. Cambridge Philos. Soc.
115
,
97
110
(
1994
).
7.
R.C.
Buck
,
Solution of problem 4216
,
Amer. Math. Monthly
55
,
36
(
1948
).
8.
H.
Çakalli
,
Sequential definitions of compactness
,
Appl. Math. Lett.
21
:
6
,
594
598
(
2008
).
9.
H.
Çakalli
,
On
G-continuity, Comput. Math. Appl.
61
,
313
318
(
2011
).
10.
H.
Çakalli
,
New kinds of continuities
,
Comput. Math. Appl.
61
,
960
965
(
2011
).
11.
H.
Çakalli
,
Sequential definitions of connectedness
,
Appl. Math. Lett.
25
,
461
465
(
2012
).
12.
H.
Çakalli
and
O.
Mucuk
,
On connectedness via a sequential method
,
Rev. Un. Mat. Argentina
54
:
2
,
101
109
(
2013
).
13.
H.
Çakalli
and
B.
Thorpe
,
On summability in topological groups and a theorem of D.L. Prullage
,
Ann Soc. Math. Pol. Comm. Math., Ser. I
29
,
139
148
(
1990
).
14.
J.
Connor
and
K.-G.
Grosse-Erdmann
,
Sequential definitions of continuity for real functions
,
Rocky Mountain J. Math.
33
:
1
,
93
121
(
2003
).
15.
T.
Datuashvili
,
Whitehead homotopy equivalence and internal category equivalence of crossed modules in categories of groups with operations
,
Proc. A. Razmadze Math. Inst.
113
,
3
30
(
1995
).
16.
T.
Datuashvili
,
Cohomologically trivial internal categories in categories of groups with operations
,
Appl. Categ. Structures
3
,
221
237
(
1995
).
17.
T.
Datuashvili
,
Categorical, homological, and homotopical properties of algebraic objects
,
J. Math. Sci. (N.Y.)
225
:
3
,
383
533
(
2017
).
18.
M.
Dik
and
I.
Canak
,
New types of continuities
,
Abstr. Appl. Anal.
2010
, Article ID 485706 (2010).
19.
G.
Di Maio
and
Lj.D.R.
Kočinac
,
Statistical convergence in topology
,
Topology Appl.
156
,
28
45
(
2008
).
20.
P.J.
Higgins
,
Groups with multiple operators
,
Proc. London Math. Soc.
s3-6
:
3
,
366
416
(
1956
).
21.
T.B.
Iwinski
,
Some remarks on Toeplitz methods and continuity
,
Comment.Math. Prace Mat.
17
,
37
43
(
1972
).
22.
S.
Lin
and
L.
Liu
,
G-methods, G-spaces and G-continuity in topological spaces
,
Topology Appl.
212
,
29
48
(
2016
).
23.
O.
Mucuk
and
H.F.
Akiz
,
Monodromy groupoid of an internal groupoid in topological groups with operations
,
Filomat
29
:
10
,
2355
2366
(
2015
).
24.
O.
Mucuk
and
H.
Çakalli
,
G-sequentially connectedness for topological groups with operations
,
Filomat
32
:
3
,
1079
1089
(
2018
).
25.
O.
Mucuk
,
B.
Kılıçarslan
,
T.
Şahan
and
N.
Alemdar
,
Group-groupoid and monodromy groupoid
,
Topology Appl.
158
,
2034
2042
(
2011
).
26.
O.
Mucuk
and
T.
Şahan
,
On G-sequential continuity
,
Filomat
28
:
6
,
1181
1189
(
2014
).
27.
O.
Mucuk
and
T.
Şahan
,
Coverings and crossed modules of topological groups with operations
,
Turkish J. Math.
38
,
833
845
(
2014
).
28.
O.
Mucuk
,
T.
Şahan
and
N.
Alemdar
,
Normality and quotients in crossed modules and group-groupoids
,
Appl. Categ. Structures
23
:
3
,
415
428
(
2015
).
29.
G.
Orzech
,
Obstruction theory in algebraic categories I and II
,
J. Pure. Appl. Algebra
2
,
287
314 and 315
– 340 (
1972
).
30.
E.
Ö ztürk
,
On almost-continuity and almost
A-continuity of real functions, Commun. Fac. Sci. Univ. Ank. Seér. A1 Math. Stat.
32
,
25
30
(
1983
).
31.
T.
Porter
,
Extensions, crossed modules and internal categories in categories of groups with operations
,
Proc. Edinb. Math. Soc.
30
,
373
381
(
1987
).
32.
E.C.
Posner
,
Summability preserving functions
,
Proc. Amer. Math. Soc.
12
,
73
76
(
1961
).
33.
E.
Spigel
and
N.
Krupnik
,
On the A-continuity of real functions
,
J. Anal.
2
,
145
155
(
1994
).
34.
V.K.
Srinivasan
,
An equivalent condition for the continuity of a function
,
Texas J. Sci.
32
,
176
177
(
1980
).
35.
E.
Savaş
,
G.
Das
,
On the A-continuity of real functions
,
İstanbul Univ. Fen Fak. Mat. Derg.
53
,
61
66
(
1994
).
36.
E.
Savaş
,
On invariant continuity and invariant A-continuity of real functions
,
J. Orissa Math. Soc.
3
,
83
88
(
1984
).
37.
Y.X.
Wu
and
F.
Lin
,
The G-connected property and G-topological groups
,
Filomat
33
:
14
,
4441
4450
(
2019
).
38.
A.
Zygmund
, Trigonometric Series, 2nd ed., vol.
II
,
Cambridge Univ. Press
,
London-New York
,
1959
.
This content is only available via PDF.
You do not currently have access to this content.