In this paper we will explore the 2D system with Hamiltonian
, describing trapped ionic system in the quadrapole field with a superposition of rationally symmetric hexapole and octopole fields for meromorphic integrability. We use the Lyapunov and Ziglin-Morales-Ruiz-Ramis’s classical methods for the proofs.
1.
M.
Benkhali
,
J.
Kharbach
,
I. E.
Fakkousy
,
W.
Chatar
,
A.
Rezzouk
, and
M.
Ouazzani-Jamil
, “
Painleve analysis and integrability of the trapped ionic system
,”
Phys. Lett. A
382
,
2515
2525
(
2018
).
2.
J.
Morales-Ruiz
,
Differential Galois Theory and Non-integrability of Hamiltonian Systems
(Birkhäuser.,
1999
).
3.
O.
Christov
and
G.
Georgiev
, “
Non-integrability of some higher-order painleve equations in the sense of liouville
,”
SIGMA
11
045
,
21
(
2015
).
4.
A.
Lyapunov
, “
On certain property of the differential equations of the problem of motion of a heavy rigid body having a fixed point
,”
Soobsch. Kharkov Math. Obscht.
2
,
4
, 1894,
123
140
(
1954
).
5.
E. G. C.
Poole
,
Introduction to the Theory of Linear Differential Equations
(
Oxford
,
At The Clarendon Press
.,
1936
).
6.
R. S.
Maier
, “
P-symbols, heun identities, and 3f2 identities, american mathematical society. special session on special functions and orthogonal polynomials
,”
Contemporary Math. Ser.
471
,
139
159
(
2007
).
7.
R. S.
Maier
, “
The 192 solutions of the heun equation
,”
Math. Comp
76
,
811
843
(
2007
).
8.
R.
Vidunas
and
G.
Filipuk
, “
Parametric transformations between heun and gauss hypergeometric functions
,”
Functions, Funkcialaj Ekvacioj
56
,
271
321
(
2013
).
9.
R.
Vidunas
, “
Degenerate and dihedral heun functions with parameters
,”
Hokkaido Mathematical Journal
45
,
93
108
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.