In this paper we will explore the 2D system with Hamiltonian , describing trapped ionic system in the quadrapole field with a superposition of rationally symmetric hexapole and octopole fields for meromorphic integrability. We use the Lyapunov and Ziglin-Morales-Ruiz-Ramis’s classical methods for the proofs.
REFERENCES
1.
M.
Benkhali
, J.
Kharbach
, I. E.
Fakkousy
, W.
Chatar
, A.
Rezzouk
, and M.
Ouazzani-Jamil
, “Painleve analysis and integrability of the trapped ionic system
,” Phys. Lett. A
382
, 2515
–2525
(2018
).2.
J.
Morales-Ruiz
, Differential Galois Theory and Non-integrability of Hamiltonian Systems
(Birkhäuser., 1999
).3.
O.
Christov
and G.
Georgiev
, “Non-integrability of some higher-order painleve equations in the sense of liouville
,” SIGMA
11
045
, 21
(2015
).4.
A.
Lyapunov
, “On certain property of the differential equations of the problem of motion of a heavy rigid body having a fixed point
,” Soobsch. Kharkov Math. Obscht.
2
, 4
, 1894, 123
–140
(1954
).5.
E. G. C.
Poole
, Introduction to the Theory of Linear Differential Equations
(Oxford
, At The Clarendon Press
., 1936
).6.
R. S.
Maier
, “P-symbols, heun identities, and 3f2 identities, american mathematical society. special session on special functions and orthogonal polynomials
,” Contemporary Math. Ser.
471
, 139
–159
(2007
).7.
R. S.
Maier
, “The 192 solutions of the heun equation
,” Math. Comp
76
, 811
–843
(2007
).8.
R.
Vidunas
and G.
Filipuk
, “Parametric transformations between heun and gauss hypergeometric functions
,” Functions, Funkcialaj Ekvacioj
56
, 271
–321
(2013
).9.
R.
Vidunas
, “Degenerate and dihedral heun functions with parameters
,” Hokkaido Mathematical Journal
45
, 93
–108
(2016
).
This content is only available via PDF.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.