Let G =(V, E) be finite and simple graphs with vertex set V(G) and edge set E(G). A graph G is called super edge-magic if there exists a bijection f: V(G) ∪ E(G) → {1, 2, ⋯, |V(G)| + |E(G)|} and f(V(G)) = {1, 2, ⋯, |V(G)|} such that f(x) + f(xy) + f(y) is a constant for every edge xyE(G). A graph G with isolated vertices is called pseudo super edge-magic if there exists a bijection f: V(G) → {1, 2, ⋯, |V(G)|} such that the set {f(x) + f(y) ∶ xyE(G)} ∪ {2f(x) ∶ deg(x) = 0} consist of |E(G)| + |{xV(G) ∶ deg(x) = 0}| consecutive integers. In this paper, we construct (pseudo) super edge-magic 2-regular graphs from a super edge-magic cycle by using normalized Kotzig arrays. We also show that the graph C3CnK1 is pseudo super edge-magic for n ≡ 1(mod 4). By this result, we obtain some new classes of super edge-magic 2-regular graphs. In addition, we show that union of cycles and paths are super edge-magic.

1.
G.
Chartrand
,
L.
Lesniak
, and
P.
Zhang
,
Graphs and Digraphs
, Sixth Edition,
CRC Press
,
New York
,
2016
.
2.
H.
Enomoto
,
A.
,
T.
Nakamigawa
, and
G.
Ringel
,
Super edge-magic graphs, SUT J. Math.
,
34
(
1998
), pp.
105
109
.
3.
A.
Kotzig
and
A.
Rosa
,
Magic valuation of finite graphs, Canad. Math. Bull.
,
13
(
1970
), pp.
451
461
.
4.
R.
Ichishima
,
F.A.
Muntaner-Batle
, and
A.
Oshima
,
Enlarging the classes of super edge-magic 2-regular graphs
,
AKCE Int. J. Graphs Comb.
,
340
(
2013
), pp.
3117
3124
.
5.
R.
Figueroa-Centeno
,
R.
Ichishima
, and
F.A.
Muntaner-Batle
,
The place of super edge-magic labelings among other classes of labelings
,
Discrete Math.
,
231
(
2001
), pp.
153
168
.
6.
R.
Figueroa-Centeno
,
R.
Ichishima
, and
F.A.
Muntaner-Batle
,
On the super edge-magic graphs
,
Ars Combin.
,
64
(
2002
), pp.
81
95
.
7.
R.
Figueroa-Centeno
,
R.
Ichishima
, and
F.A.
Muntaner-Batle
,
On the super edge-magic deficiency of graphs
,
Australas J. Combin.
,
32
(
2005
), pp.
225
242
.
8.
J.
Holden
,
D.
McQuillan
, and
J.M.
McQuillan
,
A conjecture on strong magic labelings of 2-regular graphs
,
Discrete Math.
,
309
(
2009
), pp.
4130
4136
.
9.
R.
Figueroa-Centeno
,
R.
Ichishima
,
F.A.
Muntaner-Batle
, and
A.
Oshima
,
A magical approach to some labeling conjectures
,
Discuss. Math. Graph Theory
,
31
(
2011
), pp.
79
113
.
10.
S.
Chichacz
,
D.
Froncek
, and
I.
Singgih
.
Vertex-magic total labelings of 2-regular graphs
,
Discrete Math.
,
340
(
2017
), pp.
3117
3124
.
11.
A.A.G.
Ngurah
,
On (super) edge-magic deficiency of some classes of graphs
, submitted to
Electron. J. Graph Theory Appl.
, (
2019
).
12.
D.
McQuillan
, and
J.M.
McQuillan
,
Strong vertex-magic and edge-magic labelings of 2-regular graphs of odd order using Kotzig completion
,
Discrete Math.
,
341
(
2018
), pp.
194
202
.
13.
A.
Kotzig
,
On magic valuation of trichromatic graphs
,
Report of the CRM
, (
1971
), CRM-148.
This content is only available via PDF.