Inverse problems for a convection-diffusion equations with the condition of pointwise overdetermination are considered. It is proven that the problems on recovering the point source is uniquely solvable under certain conditions of the data and an algorithm of determining the source is described which can be used in numerical experiments.

1.
G. I.
Marchuk
, Mathematical Models in Environmental Problems,
Studies in Mathematics and its Applications
,
16
, (
Elsevier Science Publishers
,
Amsterdam
,
1986
) pp.
3
220
.
2.
A.
El Badia
,
T.
Ha-Duong
, and
A.
Hamdi
,
Inverse Problems
21
,
1121
1136
(
2005
).
3.
A.
El Badia
,
T.
Ha-Duong
,
J. Inverse Ill-Posed Probl.
10
,
585
599
(
2002
).
4.
A.
El Badia
,
T.
Ha-Duong
,
Inverse Problems
16
,
651663
(
2000
).
5.
L.
Ling
and
T.
Takeuchi
,
Commun. Comput. Phys.
5
,
897
913
(
2009
).
6.
S. G.
Pyatkov
,
E. I.
Safonov
.
Journal of Advanced Research in Dynamical and Control Systems
11
,
496
510
(
2019
).
7.
H.
Triebel
,
Interpolation Theory. Function Spaces. Differential Operators
, (
VEB Deutscher Verlag der Wis-senschaften
,
Berlin
,
1978
), pp.
3
528
.
8.
R.
Denk
,
M.
Hieber
,
J.
Prüss
,
Mem. Amer. Math. Soc.
166
(
2003
).
9.
S. G.
Pyatkov
and
L. V.
Neustroeva
.
Complex variables and elliptic equations
, Published online: (
2020
).
10.
S. G.
Pyatkov
,
Differential Equations
53
,
1385
1396
(
2017
).
11.
O. A.
Ladyzhenskaja
,
V. A.
Solonnikov
, and
N. N.
Uralceva
, Linear and Quasilinear Equations of Parabolic Type.
Translations of Mathematical Monographs
,
23
,
American Math. Soc., Providence, R.I
.,
1967
.
This content is only available via PDF.
You do not currently have access to this content.