A probit regression model is a regression with categorical dependent variable in dichotomy or binary form. The dependent variable value of the probit regression states the probability of certain issue. In some cases, the application of this model considers the influence of area (spatial effect). The dependency tendency to the close regions is known as autocorrelation in spatial data. Due to this matter, the parameter estimations of ordinary least square (OLS) method can not be used thus it is substituted by the simulation technique, which is a method in randomly raising data. The method includes direct and indirect simulations. The latter has Markov Chain Monte Carlo (MCMC) method with Gibbs Sampling algorithm, which is the order in conducting certain distributed random data sampling by understanding the required distribution. In this case, the beta binomial distribution is applied. A data simulation with Gibbs Sampling algorithm can be conducted by knowing the required distributions of each variable used for R software beforehand. This research purposes to define the parameter estimation value of spatial probit regression by applying MCMC and Gibbs sampling methods with R software. The results show that the parameter estimations of spatial bivariate probit regression model by simulating through Gibbs sampling algorithm (R software), in which β̂ is the independent variable parameter and ρ̂ is the spatial lag autoregressive coefficient. The simulation with the first-value determination rise result data β = (0, 1, -1), ρ = 0.7 deciding n = 400, 10, and k = 6 show the estimations for β̂ = (0.01205, 0.98709, -0.9675) and β̂ = 0.68523.

1.
Rawlings
,
J. O.
,
Sastry
G. P.
,
David
A. D.
1998
Applied Regression Analysis: A Research Tool
(
New York
:
Springer
)
2.
Aldrich
,
John H.
dan
Nelson
,
Forrest D.
1984
Linear Probability, logit and Probit Models
(
Californea
:
SAGE Publications
)
3.
Hosmer
,
David
W.
,
Lemeshow
,
Stanley
1989
Applied Logistic Regression
(
New York
:
John Wiley & Sons, Inc
.)
4.
LeSage
J. P.
Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models
Geographical Analysis
32
(
2000
) no.
1
,
19
35
5.
LeSage
J. P.
and
Smith
,
Tony
E.
2002
A Bayesian Probit Model with Spatial Dependencies
(
New York
:
CRC Press
,)
6.
Geman
S.
,
Geman
D.
1984
Stochastic Relaxation, Gibbs Distribution and the Bayesian restoration of images
IEEE Transactions on Pattern Analysis and Machine Intelligence
6
721
741
7.
LeSage
J. P.
,
R. K.
Pace
2009
Introduction to Spatial Econometrics
(
CRC Press
,
New York
)
8.
Anifa
,
Mukid
M. A.
,
Rusgiyono
A.
2012
Simulasi Stokastik Menggunakan Algoritme Gibbs Sampling
Jurnal Gaussian
1
21
30
9.
Hastings
W. K.
1997
Monte Carlo Sampling Methode Using Markov Chains and Their Aplications
Biometrika
57
97
109
10.
Walsh
B.
2004
Markov Chain Monte Carlo and Gibbs Sampling.
Lecture Notes for EEB
,
581
11.
Gujarati DN 2003 Basic enomometric
(
New York
:
McGraw Hill
)
12.
Box
G. E. P.
,
Tiao
G. C.
1973
Bayesian Inference In Statistical Analysis
(
Philippines
:
Addidion- Wesley Publishing Company
)
13.
Casella
G.
,
R. L.
Berger
2002
Statistical Inference
(
Thomson Learning
,
Duxbury
)
14.
Wilhelm
S.
,
M.
Godinho
2013
Estimating Spatial Probit Models in R.
The R journal
5
No.
1
,
130
143
15.
Gammerman
D.
1997
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
(
Chapman & Hall
,
London
)
16.
Casella
G.
2001
Empirical Bayes Gibbs Sampling
,
Biostatistics
,
4
, pp.
485
500
17.
Casella
G.
,
George
E. I.
1992
Explaining Gibbs Sampler Journal of The American Statistical Association vol
46
(
3
)
167
174
This content is only available via PDF.
You do not currently have access to this content.