We consider the problem of interpolation of scattered data in ℝ3 and propose a solution based on Nielson's minimum norm network and triangular Bézier patches. Our algorithm applies splitting to all triangles of an associated triangulation and constructs G1-continuous bivariate interpolant consisting of quartic triangular Bézier patches. The algorithm is computationally simple and produces visually pleasant smooth surfaces. We have created a software package for implementation, 3D visualization and comparison of our algorithm and the known Shirman and Séquin's method which is also based on splitting and quartic triangular Bézier patches. The results of our numerical experiments are presented and analysed.

1.
S.
Mann
,
C.
Loop
,
M.
Lounsbery
,
D.
Meyers
,
J.
Painter
,
T.
DeRose
, and
K.
Sloan
, “A survey of parametric scattered data fitting using triangular interpolants,” in
Curve and Surface Design
, edited by
H.
Hagen
(
SIAM
,
Philadelphia
,
1992
) pp.
145
172
.
2.
T. K.
Dey
, Curve and Surface Reconstruction: Algorithms with Mathematical Analysis,
Cambridge Monographs on Applied and Computational Mathematics
(
Cambridge University Press
,
2006
).
3.
K.
Anjyo
,
J.
Lewis
, and
F.
Pighin
,
“Scattered data interpolation for computer graphics, SIGGRAPH 2014 course notes
,” http://olm.co.jp/rd/research_event/scattered-data-interpolation-for-computer-graphics (Last accessed June 20,
2020
).
4.
M.
Berger
,
A.
Tagliasacchi
,
L.
Seversky
,
P.
Alliez
,
G.
Guennebaud
,
J.
Levine
,
A.
Sharf
, and
C.
Silva
,
Comput. Graph. Forum
36
,
301
329
(
2017
).
5.
R.
Clough
and
J.
Tocher
,
“Finite elements stiffness matrices for analysis of plate bending
,” in
Proceedings of the 1st Conference on Matrix Methods in Structural Mechanics
, Vol.
66–80
(
Wright-Patterson A. F. B
.,
Ohio
,
1965
) pp.
515
545
.
6.
P.
Percell
,
SIAM J. Numer. Anal.
13
,
100
103
(
1976
).
7.
G.
Farin
,
Comput. Aided Geom. Des.
2
,
19
27
(
1985
).
8.
L.
Shirman
and
C.
Séquin
,
Comput. Aided Geom. Des.
4
,
279
295
(
1987
).
9.
L.
Shirman
and
C.
Séquin
,
Comput. Aided Geom. Des.
8
,
217
221
(
1991
).
10.
H.
Chiyokura
and
F.
Kimura
,
“Design of solids with free-form surfaces
,” in
SIGGRAPH ’83 Proceedings of the 10th annual conference on Computer graphics and interactive techniques
, Vol.
17
, edited by
P. P.
Tanner
(
ACM
,
New York
,
1983
) pp.
289
298
.
11.
H.
Chiyokura
,
“Localized surface interpolation method for irregular meshes
,” in
Advanced Computer Graphics, Proceedings of Computer Graphics Tokyo'86
, Vol.
66–80
, edited by
T.
Kunii
(
Springer
,
Tokyo
,
1986
) pp.
3
19
.
12.
L.
Shirman
and
C.
Séquin
,
Comput. Aided Geom. Des.
7
,
375
388
(
1990
).
13.
G.
Hettinga
and
J.
Kosinka
,
Comput. Aided Geom. Des.
62
,
166
180
(
2018
).
14.
15.
“Plotly.js
,” https://plot.ly/javascript (Last accessed June 20,
2020
).
This content is only available via PDF.
You do not currently have access to this content.