The initial value problem for the parabolic type involutory partial differential equation is studied. Applying Green's function of space operator generated by the differential problem, we get formula for solution of this problem. The theorem on stability estimates for the solution of this problem with involution is established.

1.
C. E.
Falbo
,
Journal of Interdisciplinary Mathematics
6
(
3
),
279
289
(
2003
).
2.
R. M.
Nesbit
, “Delay differential equations for structured populations,” (
Springer
,
Boston, MA
,
1997
) pp.
89
118
.
3.
D.
Przeworska-Rolewicz
,
Equations with Transformed Argument: Algebraic Approach
(
North-Holland
,
Amsterdam
,
1997
).
4.
J.
Wiener
,
Generalized Solutions of Functional Differential Equations
(
World Scientific
,
1993
).
5.
A.
Cabada
and
F.
Tojo
,
Differential Equations with Involution’s
(
Atlantis Press
,
2015
).
6.
A.
Ashyralyev
and
A. M.
Sarsenbi
,
Numerical Functional Analysis and Optimization
38
(
10
),
1295
1304
(
2017
).
7.
A.
Ashyralyev
and
A. M.
Sarsenbi
,
Electronic Journal of Differential Equations
248
,
8
(
2015
).
8.
A.
Ashyralyev
and
B.
Karabaeva
,
AIP Conf. Proc
1759
,
020111
(
1983
).
9.
A.
Ashyralyev
and
A. M.
Sarsenbi
,
Springer Proceedings in Mathematics and Statistics
216
,
204
212
(
2017
).
10.
A. A.
Sarsenbi
,
Well-Posedness of Mixed Problems for Parabolic type with Involution
, Phd thesis,
CSU
,
Kazakhstan
(
2019
).
11.
A.
Ashyralyev
and
T.
Abbas
,
AIP Conf. Proc.
2183
,
070015
(
2019
).
12.
A.
Ashyralyev
and
P. E.
Sobolevskii
,
New Difference Schemes for Partial Differential Equations
(
Birkhäuser Verlag
,
Basel, Boston, Berlin
,
2004
).
This content is only available via PDF.
You do not currently have access to this content.