In this work, the non-Newtonian effect on double-diffusive natural convection of nanofluid flow exposed to both temperature and concentration gradient within a square enclosure has been studied numerically. The top and the bottom walls are considered adiabatic and impermeable while the side walls are imposed to constant temperature and concentration. The power-law viscosity model has been employed to characterize the non-Newtonian fluid behavior in the present study. The system of non-dimensional conservation equations for continuity, momentum, energy, and solute concentration are solved using the finite volume method for the SIMPLER algorithm. An in-house FORTRAN code is validated comparing the present results with the benchmark results published before. Results are presented in the form of streamlines, isotherms and iso-concentration for different volume fraction (φ) of the nanofluids and different power-law index (n). The physical quantities like heat and mass transfer rates are presented in terms of the local Nusselt number (Nu) and the local Sherwood number (S h), respectively.

1.
R. W.
Schmitt
,
Annu. Rev. Fluid Mech.
26
, p.
255
285
(
1994
).
2.
T.
Nishimura
,
M.
Wakamatsu
, and
A.
Morega
,
Int. J. Heat Mass Transfer
41
,
1601
1611
(
1998
).
3.
N.
Nithyadevi
and
R.-J.
Yang
,
International Journal of Heat and Fluid Flow
30
(
5
),
902
910
(
2009
).
4.
C.
Beghein
,
F.
Haghighat
, and
F.
Allard
,
Int. J. Heat Mass Transfer
35
,
833
846
(
1992
).
5.
S.
Choi
and
J.
Eastman
,
Am. Soc. Mech. Eng. Fluids Eng. Div.
231
,
99
105
(
1995
).
6.
S.
Kakaç
and
A.
Pramuanjaroenkij
,
International Journal of Heat and Mass Transfer
52
,
3187
3196
(
2009
).
7.
J.
Koo
and
C.
Kleinstreuer
,
Journal of Nanoparticle Research
6
,
577
588
(
2004
).
8.
K.
Khanafer
,
K.
Vafai
, and
M.
Lightstone
,
International Journal of Heat and Mass Transfer
46
,
3639
3653
(
2003
).
9.
K. S.
Hwang
,
J. H.
Lee
, and
S. P.
Jang
,
Int. J. Heat Mass Transfer
50
,
4003
4010
(
2007
).
10.
J. A.
Esfahani
and
V.
Bordbar
,
J. Nanotech. Eng. Med.
2
,
1
9
(
2011
).
11.
R. P.
Chhabra
,
Bubbles, drops, and particles in non-Newtonian fluids (2nd ed.)
(
Taylor & Francis Ltd
.,
Boca Raton, FL
,
2006
).
12.
S. K.
Jenaa
,
S. K.
Mahapatra
,
A.
Sarkar
, and
A. J.
Chamkhac
,
J. Taiwan Inst. Chem. Eng.
51
,
9
19
(
2015
).
13.
H.
Chen
,
Y.
Ding
,
A.
Lapkin
, and
X.
Fan
,
J. Nanopart. Res.
11
(
6
), p.
1513
1520
(
2009
).
14.
L.
Wang
,
C.
Huang
,
X.
Yang
,
Z.
Chai
, and
B.
Shi
,
International Journal of Heat and Mass Transfer
128
,
688
699
(
2019
).
15.
Y.
Xuan
and
Q.
Li
,
Int. J. Heat Fluid Flow
21
,
58
64
(
2000
).
16.
M.
Ghanbarpour
,
E. B.
Haghigi
, and
R.
Khodabandeh
,
Experimental Thermal and Fluid Science
53
,
227
235
(
2014
).
17.
J.
Maxwell-Garnett
,
Philos. Trans. R. Soc. A
203
,
385
420
(
1904
).
18.
A. A.
Minea
and
O.
Manca
,
Heat Transfer Engineering
38
,
909
918
(
2017
).
19.
H.
Brinkman
,
The Journal of Chemical Physics
20
,
571
581
(
1952
).
20.
S.
Acharya
and
S. K.
Dash
,
Numerical Heat Transfer, Part A: Applications
76
,
552
575
(
2019
).
21.
V. S. V.
Patankar
,
Numerical heat transfer and fluid flow
(
McGraw Hill Book Company
,
London
,
1980
).
22.
O.
Turan
,
A.
Sachdeva
,
N.
Chakraborty
, and
R. J.
Poole
,
Journal of Non-Newtonian Fluid Mechanics
166
,
1049
1063
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.