Absorption power cycle (APC) using water-lithium bromide (LiBr) as a working fluid is a novel concept especially suitable for micro scale low temperature distributed power systems. Theoretical investigations provide various benefits in comparison to alternatives such as organic Rankine cycles, but technical design poses many challenges as well. Regardless of similarities with LiBr absorption chillers, no LiBr APC has been to authors’ knowledge experimentally operated. This paper focuses on an experimental development of a proof-of-concept APC operating with LiBr solution. The first part contains an introduction of the experimental system built, the first tests and experimental results of the cycle. The main part of this work focuses specifically on the expander design and performance. After discussing turbine considerations, axial steam micro turboexpander with plastic 3D printed components (rotor and stator) with design power output of approx. 300 W is described. Experimental performance is presented and compared to the design point.

1.
I.
Johnson
,
T.
William
,
W. T.
Choate
, and
A. Amber
Davidson
, ‘
Waste heat recovery: technology and opportunities in US industry
’,
2008
.
2.
F.
Campana
 et al., ‘
ORC waste heat recovery in European energy intensive industries: Energy and GHG savings
’,
Energy Convers. Manag.
, vol.
76
, pp.
244
-
252
, Dec.
2013
.
3.
H.
Chen
,
D. Y.
Goswami
, and
E. K.
Stefanakos
, ‘
A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
’,
Renew. Sustain. Energy Rev.
, vol.
14
, no.
9
, pp.
3059
-
3067
, Dec.
2010
.
4.
S.
Lecompte
,
H.
Huisseune
,
M.
van den Broek
,
B.
Vanslambrouck
, and
M.
De Paepe
, ‘
Review of organic {R}ankine cycle ({ORC}) architectures for waste heat recovery
’,
Renew. Sustain. Energy Rev.
, vol.
47
, pp.
448
461
,
2015
.
5.
N.
Rossi
, ‘
Testing of a new supercritical ORC technology for efficient power generation from geothermal low temperature resources
’, in
ASME ORC 2013 Conference
,
2013
.
6.
T.
Eller
,
F.
Heberle
, and
D.
Brilggemann
, ‘
Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle
’,
Energy
, vol.
119
, pp.
188
-
198
, Jan.
2017
.
7.
F.
Ragazzi
and
C. O.
Pedersen
, ‘
Thermodynamic optimization of evaporators with zeotropic refrigerant mixtures
’, in
1996 annual meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Inc
.,
San Antonio, TX (United States
),
22-26 Jun 1996
; Other Information: PBD: 1996; Related Information: Is Part Of ASHRAE transactions 1996: V, 1995, no. April.
8.
W. J. J.
Mulroy
,
P. A. P. A.
Domanski
, and
D. A. A.
Didion
, ‘
Glide matching with binary and ternary zeotropic refrigerant mixtures Part 1. An experimental study
’,
Int. J. Refrig.
, vol.
17
, no.
4
, pp.
220
225
,
1994
.
9.
A. I.
Kalina
, ‘
Generation of energy by means of a working fluid, and regeneration of a working fluid
’, EP 0065042 A1,
1982
.
10.
A. I.
Kalina
, ‘
Method of generating energy
’, US Patent 4,548,043,
1985
.
11.
J.
Sun
,
L.
Fu
, and
S.
Zhang
, ‘
A review of working fluids of absorption cycles
’,
Renew. Sustain. Energy Rev.
, vol.
16
, no.
4
, pp.
1899
1906
,
2012
.
12.
J. D.
Maloney
and
R. C.
Robertson
, ‘
Thermodynamic study of ammonia-water heat power cycles
’,
Oak Ridge
,
1953
.
13.
N.
Garcia-Hernando
,
M.
de Vega
,
A.
Soria-Verdugo
, and
S.
Sanchez-Delgado
, ‘
Energy and exergy analysis of an absorption power cycle
’,
Appl. Therm. Eng.
, vol.
55
, no.
1
, pp.
69
77
,
2013
.
14.
V.
Novotny
and
M.
Kolovratnik
, ‘
Absorption power cycles for low-temperature heat sources using aqueous salt solutions as working fluids
’,
Int. J. Energy Res.
, vol.
41
, no.
7
, pp.
952
-
975
, Jun.
2017
.
15.
V.
Novotny
,
V.
Vodicka
,
J.
Mascuch
, and
M.
Kolovratnik
, ‘
Possibilities of water-lithium bromide absorption power cycles for low temperature, low power and combined power and cooling systems
’, in
Energy Procedia
,
2017, vol
.
129
.
16.
V.
Novotny
,
J.
Spale
,
B. B.
Stunova
,
M.
Kolovratnik
,
M.
Vitvarova
, and
P.
Zikmund
, ‘
3D Printing in Turbomachinery: Overview of Technologies, Applications and Possibilities for Industry 4.0
’, in
ASME Turboexpo 2019
,
2019
.
17.
A. P.
Weiß
 et al., ‘
Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing
’,
Energy
, p.
118407
, Jul.
2020
.
18.
V.
Novotny
,
M.
Vitvarova
,
J. P.
Jakobsen
, and
M.
Kolovratnik
, ‘
Analysis and Design of Novel Absorption Power Cycle Plants
’, in
ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
,
2016
, no.
1
, p.
V001T13A005
V001T13A005
.
19.
V.
Novotny
,
D.
Suchna
, and
M.
Kolovratnik
, ‘
Experimental rig for LiBr-water absorption power cycle - Design and first experimental results
’, in
AIP Conference Proceedings
,
2018
, vol.
2047
.
20.
V.
Novotny
,
D. J.
Szucs
,
J.
Spale
,
V.
Vodicka
,
J.
Mascuch
, and
M.
Kolovratnik
, ‘
ABSORPTION POWER CYCLE WITH LIBR SOLUTION WORKING FLUID-DESIGN OF THE PROOF-OF-CONCEPT UNIT
’, in
5 th International Seminar on ORC Power Systems
,
2019
.
21.
S. H.
Kang
, ‘
Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid
’,
Energy
, vol.
41
, no.
1
, pp.
514
524
,
2012
.
22.
M.
Pini
 et al., ‘
Fluid-dynamic design and characterization of a mini-ORC turbine for laboratory experiments
’,
Energy Procedia
, vol.
129
, pp.
1141
-
1148
, Sep.
2017
.
23.
D.
Fiaschi
,
G.
Manfrida
, and
F.
Maraschiello
, ‘
Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles
’,
Appl. Energy
, vol.
97
, pp.
601
-
608
, Sep.
2012
.
24.
D.
Fiaschi
,
G.
Manfrida
, and
F.
Maraschiello
, ‘
Design and performance prediction of radial ORC turboexpanders
’,
Appl. Energy
, vol.
138
, pp.
517
-
532
, Jan.
2015
.
25.
F.
Alshammari
,
A.
Karvountzis-Kontakiotis
,
A.
Pesiridis
, and
T.
Minton
, ‘
Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System
’,
Energy Procedia
, vol.
129
, pp.
285
-
292
, Sep.
2017
.
26.
E.
Macchi
and
M.
Astolfi
,
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications
.
Woodhead Publishing
,
2016
.
27.
A. P.
Weiss
and
G.
Zinn
, ‘
Micro Turbine Generators For Waste Heat Recovery And Compressed Air Energy Storage
’, in
15th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2016
,
2016
, pp.
1
9
.
28.
A. P.
Weiß
, ‘
Volumetric Expander Versus Turbine - Which Is the Better Choice for Small Orc Plants
’, in
3rd International Seminar on ORC Power Systems
,
October 12-14, 2015
,
Brussels, Belgium
,
2015
, pp.
1
10
.
29.
A. P.
Weiss
,
J.
Hauer
,
T.
Popp
, and
M.
Preissinger
, ‘
EXPERIMENTAL INVESTIGATION OF A SUPERSONIC MICRO TURBINE RUNNING WITH HEXAMETHYLDISILOXANE
’, in
36th Meeting of Departments of Fluid Mechanics and Thermodynamics, 16th conference on Power System Engineering, Thermodynamics & Fluid Flow - PSE 2017
,
2017
.
30.
A. P.
WeiB
,
T.
Popp
,
J.
Müller
,
J.
Hauer
,
D.
Brilggemann
, and
M.
PreiBinger
, ‘
Experimental characterization and comparison of an axial and a cantilever micro-turbine for small-scale Organic Rankine Cycle
’,
Appl. Therm. Eng.
, vol.
140
, pp.
235
244
, Jul.
2018
.
31.
V.
Novotny
 et al., ‘
Design and Manufacturing of a Metal 3D Printed kW Scale Axial Turboexpander
’, in
ASME Turboexpo 2019
,
2019
.
32.
J.
Kadrnozka
,
Tepelné turbíny a turbokompresory: Základy teorie a výpoctu
.
Akademicke nakladatelstvi CERM
,
2004
.
33.
M. Y.
Deych
,
G. A.
Philipp
, and
L. Y.
Lazarev
, ‘
Atlas of the Cascade Profiles of Axial-Flows Turbine
’,
1976
.
34.
G.
Zywica
,
T. Z.
Kaczmarczyk
, and
E.
Ihnatowicz
, ‘
Application of a heat resistant plastic in a high-speed microturbine designed for the domestic ORC system
’, pp.
1
8
,
2019
.
This content is only available via PDF.
You do not currently have access to this content.