The paper is concerned with the thermodynamic analysis of a multi-stream heat exchanger system for the Allam cycle and the development of a regenerator heat flow chart. The multi-stream heat exchanger thermodynamic analysis and development procedure are described in detail. The regenerator system constructed of five double-flow heat exchangers has 2.5% lower heat power than the ideal heat exchanging system. Besides, a subsequent flow interaction principle for the transfer of a maximal heat amount is proposed: it is necessary to begin with the cooling of the heating flows with minimal temperatures.
REFERENCES
1.
S. A.
Arrhenius
, On the influence of carbonic acid in the air upon the temperature of the ground
, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
41
, 237
–276
(1896
).2.
J. R.
McNeill
, Something new under the sun: An environmental history of the twentieth-century world
(W.W. Norton & Company
, New York
, 2001
), p. 448
.3.
J. T.
Houghton
, Y.
Ding
, D. J.
Griggs
, M.
Noguer
, P. J.
van der Linden
, X.
Dai
, K.
Maskell
and C. A.
Johnson
, Climate change 2001: The scientific basis
(Cambridge University Press
, Cambridge
, 2001
), p. 892
.4.
Climate change
2014
: Mmitigation of climate change
(Intergovernmental Panel on Climate Change
, Geneva
, 2014
), p. 1454
.5.
K. S.
Lackner
, A guide to CO2 sequestration
, Science
300
, 1677
–1678
(2003
).6.
H.
Jericha
, Efficient steam cycles with internal combustion of hydrogen and stoichiometric oxygen for turbines and piston engines
, Int. J. Hydrogen. Energ.
12
, 345
–354
(1987
).7.
H. J.
Yang
, D. W.
Kang
, J. H.
Ahn
and T. S.
Kim
, Evaluation of design performance of the semi-closed oxy-fuel combustion combined cycle
, J. Eng. Gas Turbine Power
134
, 111702
(2012
).8.
P.
Mathieu
, R.
Dubuisson
, S.
Houyou
and R.
Nihart
, New concept of CO2 removal technologies in power generation, combined with fossil fuel recovery and long term CO2 sequestration
, Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air, Munich, Germany
(2000
).9.
R. J.
Allam
, M. R.
Palmer
, G. W.
Brown
Jr, J.
Fetvedt
, D.
Freed
, H.
Nomoto
and C.
Jones
Jr, High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide
, Energy Procedia
37
, 1135
–1149
(2013
).10.
R.
Scaccabarozzi
, M.
Gatti
and E.
Martelli
, Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle
, Appl. Energ.
178
, 505
–526
(2016
).11.
A.
Rogalev
, V.
Kindra
, S.
Osipov
and N.
Rogalev
, Thermodynamic analysis of the net power oxy-combustion cycle
, Proceedings of 13-th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
, Lausanne, Switzerland
(2019
).12.
M.
Picon-Nunez
, G. T.
Polley
and M.
Medina-Flores
, Thermal design of multi-stream heat exchangers
, Appl. Therm. Eng.
22
(14
), 1643
–1660
(2002
).13.
R. C.
Pattison
and M.
Baldea
, Multistream heat exchangers: Equation-oriented modeling and flowsheet optimization
, AIChE J.
61
, 1856
–1866
(2015
).14.
A.
Rogalev
, E.
Grigoriev
, V.
Kindra
and N.
Rogalev
, Thermodynamic optimization and equipment development for a high efficient fossil fuel power plant with zero emissions
, J. Clean. Prod.
236
, 117592
(2019
).15.
A.
Rogalev
, N.
Rogalev
, V.
Kindra
and S.
Osipov
, Dataset of working fluid parameters and performance characteristics for the oxy-fuel, supercritical CO2 cycle
. Data Brief
27
, 104682
(2019
).16.
R.
Scaccabarozzi
, M.
Gatti
and E.
Martelli
, Thermodynamic optimization and part-load analysis of the NET Power Cycle
, Energy Procedia
114
, 551
–560
(2017
).17.
I. C.
Kemp
, Pinch analysis and process integration: a user guide on process integration for the efficient use of energy
(Elsevier, Oxford
, 2011
), p. 396
.
This content is only available via PDF.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.