Paper studies fresh state and rheological properties of lightweight mortars prepared with constant workability using natural lightweight aggregates, and hydrated or natural hydraulic lime as binder. Fresh state properties are studied by standardised tests and rheological characteristics are obtained utilizing hybrid rheometer. Density of fresh mortar decreased accordingly to the loose bulk densities of aggregates used, while the water retention value remained very high with minor variations. The air content in fresh mortar with pumice as an aggregate was surprisingly high, which may be caused by the open porosity of the aggregate in combination with the test design. The influence of the aggregate weight on the rheological properties was most apparent in the case of hysteresis loop size and mortar stability, where lightweight aggregate with exception of zeolite showed higher loss tangent and lower critical strain, thus shorter linear viscoelastic region.

1.
E.
Fernández-Ledesma
,
J.R.
Jiménez
,
J.
Ayuso
,
V.
Corinaldesi
,
F.J.
Iglesias-Godino
,
Mater. Construcc.
66
,
321
(
2016
)
2.
A. M.
Rashad
,
An Overview of Pumice Stone as a Cementitious Material – the Best Manual for Civil Engineer Silicon
(
2020
)
3.
M. Vitruvius
Polio
,
De Architectura
, transl.
M.H.
Morgan
, (
Dover publications
,
New York
,
2018
)
4.
C.
Colella
,
M.
de’Gennaro
,
R.
Aiello
,
Rev. Mineral. Geochem.
45
(
1
),
551
587
(
2001
)
5.
S.
Sraj
,
R.
Cano
,
R.D.
Ferron
,
M.C.G.
Juenger
,
Cem. Concr. Compos.
80
,
135
142
(
2017
)
6.
C.
Matthäus
,
D.
Weger
,
T.
Kränkel
,
L.S.
Cavallo
,
C.
Gehlen
, ‘Extrusion of Lightweight Concrete: Rheological Investigations” in
Rheology and Processing of Construction Materials
, edited by
V.
Mechtcherine
,
K.
Khayat
, and
E.
Secrieru
(
Springer International Publishing
,
2020
), pp.
409
416
.
7.
T.Z:
H.
Ting
,
M.E.
Rahman
,
H.H.
Lau
,
M.Z.Y.
Ting
,
Constr. Build. Mater.
201
,
763
777
(
2019
)
8.
C.G.
Papanicolaou
,
M.I.
Kaffetzakis
,
J. Adv. Concr. Technol.
9
(
1
),
15
29
(
2011
)
9.
M.
Vyšvařil
,
L.
Topolář
,
R.
Dvořák
,
MATEC Web Conf.
282
,
02075
(
2019
)
10.
M.
Boháč
,
R.
Nečas
,
Procedia Eng.
151
,
34
41
(
2016
)
11.
M.
Vyšvařil
,
R.
Vozák
,
IOP Conf. Ser.: Mat. Sci. Eng.
549
,
012014
(
2019
)
12.
M.
Şahmaran
,
Can. J. Civ. Eng.
35
,
796
806
(
2008
)
13.
T.
Conte
,
M.
Chaouche
,
Cem. Concr. Res.
89
,
332
344
(
2016
)
14.
M.
Choi
,
K.
Park
,
T.
Oh
,
Int. J. Concr. Struct. Mater.
10
,
65
74
(
2016
)
15.
T.
Žižlavský
,
M.
Vyšvařil
,
P.
Rovnaníková
,
Építőanyag
J. Silic. Based Compos. Mater.
71
(
6
),
204
209
(
2019
)
This content is only available via PDF.
You do not currently have access to this content.