Durability of concrete against various aggressive influences, which indicates the lifetime of a construction, is often the main criterion upon designing of up-to-date concretes. These aggressive influences may also include the effect of mechanical wear of a composite caused by abrasion. Recent researches and published studies on this topic are dealing mainly with the effect of input raw materials, concretely, the aggregate type or mineral additives, on the abrasion resistance of cement composite. The presented article aims on the problematics of various methods of concrete mix processing from the mechanical abrasion resistance point of view. These processing methods may include the traditional vibrated reference concrete, self-compacting concrete and semi-dry concrete used for production of vibropressed concrete prefabricates. Designed concrete mixtures illustrate the above-named methods for production of concrete components exposed to mechanical abrasion whereas comparable mechanical parameters are consistent for all methods and the concrete are made from the same input raw materials. Besides the abrasion resistance of produced concretes, their other physical-mechanical parameters are monitored together with the relationship between these parameters and the resistance to mechanical abrasion.

1.
M.
Adamiak
,
Abrasion resistance of materials
(
InTech
,
Croatia, Rijeka
,
2012
), pp.
20
22
.
2.
EN 12 350-6:2019
, Testing fresh concrete - Part 6: Density (
Prague
,
2019
).
3.
EN 12 350-2:2020
, Testing fresh concrete - Part 2: Slump-test (
Prague
,
2020
).
4.
EN 12 350-8:2020
, Testing fresh concrete - Part 8: Self-compacting concrete (
Prague
,
2020
).
5.
EN 12 390-8:2019
, Testing hardened concrete - Part 8: Depth of penetration of water under pressure (
Prague
,
2019
).
6.
In Czech:
R.
Hela
,
J.
Brožovský
,
A.
Hubáček
, Technické kvalitativní podmínky staveb ŘVC ČR – kapitola 1 – provádění betonových konstrukcí – vydání třetí (
Ředitelství vodních cest ČR
,
Praha
,
2017
).
7.
EN 206+A1
, Concrete – Specification, performance, production and conformity (
Prague
,
2018
).
8.
In Czech: ČSN 73 1316
, Stanovení vlhkosti, nasákavosti a vzlínavosti betonu (
Praha
,
1989
).
9.
In Czech: ČSN 73 1324
, Stanovení obrusnosti betonu (
Praha
,
1972
).
10.
K.
Holschemacher
, “
Hardened material properties of self-compacting concrete
,” in
Journal of Civil Engineering and Management
, Vol.
10
, pp.
261
266
(
2004
).
11.
E.
Horszczaruk
, “
Abrasion resistance of high strength fibre-reinforced concrete
,”in
6th International RILEM Symposium on Fibre-Reinforced Concretes
, Vol.
1
, pp.
257
266
(
2004
).
12.
L.
Wanga
,
S. H.
Zhou
,
Y.
Shi
,
S. W.
Tang
,
E.
Chen
, “
Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete
,” in
Composites Part B: Engineering
, Vol.
130
, pp.
28
37
(
2017
).
13.
B. D.
Scott
,
M.
Safiuddin
, “
Abrasion Resistance of Concrete – Design
,
Construction and Case Study
,” in
Concrete Research Letters
, Vol.
6
, pp.
136
148
(
2015
).
14.
Kılıç
,
A.
&
Atiş
,
C.D.
&
Teymen
, Assoc. Prof.
Ahmet
&
Karahan
,
O.
&
Özcan
,
F.
&
Bilim
,
C.
&
Özdemir
,
M.
. “
The influence of aggregate type on the strength and abrasion resistance of high strength concrete
,” in
Cement & Concrete Composites
, Vol.
30
, pp.
290
296
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.