We present the detailed dynamical model of a 3D printed walking robot with a minimal number of degrees of freedom (DOF). The robot has only two DOF, but despite that, it is capable of moving forward (or backwards) by walking, rotating to an arbitrary angle, going around obstacles, and even climbing stairs, in accordance with its size. Following a tendency of an increased popularity of robots in the education process, the prototype finds application in specialized educational methods for work with children with autism or development problems.

1.
D. S. Roland
Siegwart
,
Illah Reza
Nourbakhsh
,
Introduction to autonomous mobile robots
(
MIT Press
,
Cambridge, Massachusetts, London, England
,
2004
).
2.
C.
Yu
,
L.
Zhou
,
H.
Qian
, and
Y.
Xu
, “
Posture correction of quadruped robot for adaptive slope walking
,” in
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
2018
), pp.
1220
1225
.
3.
C.
Gehring
,
C. D.
Bellicoso
,
S.
Coros
,
M.
Bloesch
,
P.
Fankhauser
,
M.
Hutter
, and
R.
Siegwart
, “
Dynamic trotting on slopes for quadrupedal robots
,” in
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
2015
), pp.
5129
5135
.
4.
M.
Raibert
,
K.
Blankespoor
,
G.
Nelson
, and
R.
Playter
,
IFAC Proceedings
Volumes
41
,
10822
10825
(
2008
), 17th IFAC World Congress.
5.
M.
Doi
,
Y.
Hasegawa
, and
T.
Fukuda
, “
3d dynamic walking based on the inverted pendulum model with two degree of underactuation
,” in
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
2005
), pp.
4166
4171
.
6.
E.
Kljuno
and
R. L.
Williams
,
Journal of Robotics 2010
, p.
278597Sep
(
2010
).
7.
G.
Fayong
,
M.
Tao
,
C.
Marco
,
Z.
Ziyi
,
L.
Tao
, and
Z.
Jianghai
,
Industrial Robot: An International Journal
43
,
317
327Jan
(
2016
).
8.
S. K.
Zachariah
and
T.
Kurian
,
Robotics and Autonomous Systems
97
,
18
39
(
2017
).
9.
J.
Wang
and
Y.
Li
, “
Static force analysis for a mobile humanoid robot moving on a slope
,” in
2008 IEEE International Conference on Robotics and Biomimetics
(
2009
), pp.
371
376
.
10.
J.
Ding
,
Y.
Wang
,
M.
Yang
, and
X.
Xiao
,
Journal of Intelligent & Robotic Systems
90
,
323
338
(
2018
).
11.
J.
Lv
,
Y.
Kobayashi
,
T.
Emaru
, and
A. A.
Ravankar
,
International Journal of Advanced Robotic Systems
12
, p.
44
(
2015
), .
12.
I.
Chavdarov
and
B.
Naydenov
,
International Journal of Advanced Robotic Systems
16
,
1
1211
(
2019
).
13.
H. Siswoyo
Jo
and
N.
Mir-Nasiri
,
Mathematical and Computer Modelling
57
,
254
269
(
2013
).
14.
I.
Chavdarov
,
A.
Krastev
,
B.
Naydenov
, and
G.
Pavlova
,
International Journal of Advanced Robotic Systems
17
(
2020
), .
15.
A.
Stefanov
,
I.
Chavdarov
,
D.
Nedanovski
, and
G.
Boiadjhiev
, “
Dynamics and control of a 3d printed walking robot
,” in
2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
(
2019
), pp.
1
5
.
16.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (
Cambridge University Press
,
USA
,
2007
).
17.
Procedia Computer Science
65
,
233
240
(
2015
),
international Conference on Communications, management, and Information technology (ICCMIT'2015
).
18.
I.
Chavdarov
,
B.
Naydenov
,
S.
Kostova
,
A.
Krastev
, and
A.
Lekova
, “
Development and applications of a 3d printed walking robot-big-foot
,” in
2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
(
2018
), pp.
1
5
.
This content is only available via PDF.
You do not currently have access to this content.