An algae-based biosensor is investigated using dissolved oxygen levels producing from photosynthesis mechanism and from photoperiodism response time which describes the plant's reaction to light. This paper presents the sensitivity factor in the form of dissolved oxygen rate production level and response time of green algae-based biosensor, which is stimulated using artificial light of LEDs blue (480 nm) and red (650 nm). An amperometric electrode with two green algae as bioreceptors Chlorella kessleri and Chlorella sp. were tested in the biochip C chamber. A sample of 150µL algae with a density of 5−105 cells/ml was illuminated by the artificial light of blue and red spectrum altered for 1000 seconds of the dark-light cycle. The results showed a significant difference in the sensitivity of the algae chlorella sp. in producing dissolved oxygen which is 6.3 and 12.9 times higher than the chlorella kessleri for the blue and red light. While the photoperiodism response of Chlorella sp. has a time constant of 49.8 % for red and 37.5 % for blue smaller than Chlorella kessleri respectively. This result shows the algae chlorella sp. possesses good response characteristics to the red light, but less for photoperiodism response.

1.
R.
Kumar
,
S.
Vikram
,
S.
Kumar
, and
B. L.
Choudhary
,
Interdisciplinary J. Contemp. Res.
4
(
1
), pp.
2
5
(
2017
).
2.
F.
Takahashi
,
J. Plant Res.
,
129
(
2
), pp.
189
197
(
2016
).
3.
L.
Umar
, et al,
2015 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
, pp.
7099
7102
(
2015
).
4.
L.
Umar
,
V.
Harvenda
, and
R. N.
Setiadi
,
AIP Conf. Proc.
2169
(
1
), pp.
030010-1
-
030010-6
(
2019
).
5.
L.
Umar
,
R.
Setiadi
,
Y.
Hamzah
, and
T.
Linda
,
Int. J. Smart Sens. Intell. Syst.
10
(
4
), pp.
955
975
(
2017
).
6.
B.
Wolf
,
M.
Brischwein
,
V.
Lob
,
J.
Ressler
and
J.
Wiest
,
Biomed. Tech.
52
(
1
), pp.
164
168
(
2007
).
7.
J.
Wiest
, et al,
Anal. Lett.
39
(
8
), pp.
1759
1771
(
2006
).
8.
V. C.
Eze
,
S. B.
Velasquez-Orta
and
A.
Hernández-García
,
Algal Research.
32
, pp.
131
141
(
2018
).
9.
I.
Shitanda
,
S.i
Takamatsu
,
K.
Watanabe
, and
M.
Itagaki
,
Electrochimica Acta
54
(
21
), pp.
4933
4936
(
2009
)
10.
C.Y.
Wang
,
C.C.
Fu
,
Y.C.
Liu
,
Biochem. Eng. J.
37
(
1
), pp.
21
25
(
2007
).
11.
W.
Fu
, et al,
Appl. Microbiol. Biotechnol.
97
(
6
), pp.
4502
4505
(
2012
).
12.
C. Y.
Chen
, et al,
Bioresour. Technol.
147
, pp.
160
167
(
2013
).
13.
C. H.
Shu
, et al,
J. Chem. Technol. Biotechnol.
87
(
5
), pp.
601
607
(
2012
).
14.
R.J.
Bula
,
R.C.
Morrow
,
T.W.
Tibbitts
, and
D.J.
Barta
,
HortScience
26
(
2
), pp.
203
205
(
1991
)
15.
C. L.
Teo
, et al,
Bioresour. Technol.
162
, pp.
38
44
(
2014
).
16.
C.
Safi
, et al,
Renew. Sustain. Energy Rev. 
35
, pp.
265
278
(
2014
).
17.
M. O.
Santos
, et al,
L. D. P.
Corrêdo
,
Engenharia Agricola 
33
(
5
), pp.
1063
1071
(
2013
).
18.
SAG
Goettingen
, 2018,
Algen
Cultur
.
19.
J. G.
Webster
,
Bioinstrumentation
, (
John Wiley & Sons
,
2004
,
the University of Michigan
, 2007), p.
383
.
20.
M.
Isokawa
,
Brain Research Protocols
1
(
2
), pp.
114
116
(
1997
).
21.
Algae Culture Broth Data Sheet
,
2016
, Sigma Aldrich. Part No.: 199403788W. Sigma-aldrich.com.
22.
P.
Staudacher
,
B.
Wolf
,
M.
Schmidhuber
, and
J.
Wiest
,
IEEE Africon'11
, pp.
1
4
(
2011
).
23.
W.
Blanken
,
M.
Cuaresma
,
R.
Wijffels
and
M.
Janssen
,
Algal Res.
2
, pp.
333
340
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.