This study investigates the function of item information on mixed-format tests on the measurement of physics learning outcomes. The item information function is an important attribute in the item response theory approach that describes the accuracy of the measures taken. In this research, the mixed-format test used is a physics test consisting of 30 multiple choice format items and five constructed-response formats. The data analyzed in this study were responses from 300 junior high school students from six schools. The sample was selected using the Purposive Sampling Method. The mixed format test response data were analyzed using item response theory models, namely the Multiple-Choice Model and the Graded Response Model. Calibration is done in two ways: simultaneously and separately, then the results are compared to find out the value of higher information functions. The results of the analysis show that the information function of the items carried out simultaneously for the mixed format test is higher than the information function produced by the calibration done separately. Therefore, the combination of multiple-choice and graded response models is highly recommended for analyzing mixed-format tests; this combination increases the accuracy of capability measurement.

1.
Kemendikbud
,
“Sistem Pendidikan Nasional
” (Undang-Undang No. 20 Tahun
2003
).
2.
W.
Fitriani
and
F.
Bakri
,
Wahana Pendidikan Fisika
2
(
1
), pp.
36
42
(
2017
).
3.
H.
Anis
and
A. M.
Yusuf
,
JPPPF
2
(
2
), pp.
23
30
(
2017
).
4.
C.
Fabby
and
K.
Koenig
,
J. STEM Educ.
16
(
4
), (
2016
),
5.
P.
Tuksino
,
C.
Nichanong
, and
R.
Saen-amnuaiphon
,
Procedia-Soc. Behav. Sci.
69
, pp.
1522
1528
(
2012
).
6.
R. J.
De Ayala
and
S. Y.
Santiago
,.
J. Sch. Psychol.
60
, pp.
25
40
(
2017
).
7.
W.
Wang
,
F.
Drasgow
, and
L.
Liu
,
Front. Psychol.
7
, p.
270
(
2016
).
8.
I.
Falani
,
M.
Akbar
, and
D. S.
Naga
,
Int. J. Instr.
13
(
4
), (
2020
).
9.
O.
Naumenko
,
CPA Exam Data. AICPA
(
2014
).
10.
L.
Price
,
Psychometric Methods Theory into Practice
(
Guildford Press
,
New York City
,
2018
).
11.
F.
Baker
and
S.
Kim
,
The Basic of Item Response Theory Using R
(
Springer Publishing
,
New York City
,
2017
).
12.
A.
Moghadamzadeh
,
K.
Salehi
, and
E.
Khodaie
, E.
Procedia-Soc. Behav. Sci.
29
, pp.
1359
1367
(
2011
).
13.
A.
Ziyba
,
Didactics of Mathematics
10
(
14
), pp.
87
96
(
2013
).
14.
D.
Magis
,
J. Educ. Behav. Stat.
40
(
1
), pp.
96
105
(
2015
).
15.
J. W.
Young
, et al,
ETS Research Report Series
2013
(
1), p. i-27
(
2013
).
16.
A.
Abadyo
, and
B.
Bastari
,
REiD (Research and Evaluation in Education)
1
(
1
),
55
72
(
2015
).
17.
M. d.
Toit
,
IRT from SSI : Bilog-MG, Multilog, Parscale, Testfact
(
SSI Inc,United States
,
2013
).
18.
D. S.
Naga
,
Teori Sekor pada Pengukuran Mental
(
Nagarani Citrayasa
,
Jakarta
,
2012
).
19.
H.
Retnawati
,
Teori Respon Butir dan Penerapannya
(Mulya Medika,
2014
).
20.
H. B
,
Ytlmaz
,
Int. Electron. J. Elementary Educ.
11
(
5
),
539
545
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.