The paper considers the issues of constructing a servo drive based on an indicator gyrostabilizer with an angular rate sensor. The stability and control modes of a servo drive are investigated; methods of tuning system parameters are proposed. Methods of reducing the gyrostabilizer drift by combining the signals of different sensors are proposed. An analysis of the operating modes of the servo drive is carried out, the results of the practical implementation of the servo drive and analysis of its operation are presented.

1.
J. M.
Hilkert
, “
Inertially Stabilized Platform Technology: Concepts and Principle
.”,
IEEE Control Systems Magazine
, vol.
28
, no.
1
, (
2008
)
26-46
.
2.
M.
Masten
and
J.
Hilkert
, “
Electromechanical system configuration for pointing, tracking, and stabilization applications
,”
Proc. SPIE
, vol.
779
, pp
75
87
,
1987
.
3.
M.
Masten
, “
Inertially Stabilized Platforms for Optical Imaging Systems: Tracking Dynamic Targets with Mobile Sensors
”,
IEEE Control Systems Magazine
, vol.
28
, no.
2
, (
2008
)
47
64
.
4.
S.
Teare
and
S.
Restaino
, Introduction to Image Stabilization.
Bellingham, WA
:
SPIE
,
2006
.
5.
J.
Hilkert
,
M.
Bowen
, and
J.
Wang
, “
Specifications for image stabilization systems
,”
Proc. SPIE
, vol.
1498
, pp.
24
38
,
1991
.
6.
M.R.
Sweeney
,
L.
Redd
,
T.
Vettese
,
R.
Myatt
,
D.
Uchida
and
D.
Sellers
Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space
” in
Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems II (International Society for Optics and Photonics
,
2015
) Vol.
9574
, p.
957404
.
7.
J.
Fisk
and
A.
Rue
, “
Confidence limits for the pointing error of gimbaled sensors
,”
IEEE Trans. Aerosp. Electron. Syst.
, vol.
AES-2
, no.
6
, pp.
648
654
,
1966
.
8.
R.
Broucke
, “
Equations of motion of a rotating rigid body
,”
AIAA J. Guid. Control Dyn.
, vol.
13
, no.
6
, pp.
1150
1152
,
1990
.
9.
V.A.
Besekerskii
and
E.A.
Fabrikant
Dynamic Synthesis of Gyroscopic Stabilization Systems
, (
Sudostroenie, Leningrad
,
1968
) pp.
70
101
.
10.
A.
Rue
, “
Precision Stabilization Systems
,”
IEEE
, vol.
AES-10
, no.
1
, (
1974
)
34
42
.
11.
J.
Profeta
,
W.
Vogt
, and
M.
Mickle
, “
Torque disturbance rejection in high accuracy tracking systems
,”
IEEE Trans. Aerosp. Electron. Syst.
, vol.
26
, no.
2
, pp.
232
237
,
1990
.
12.
H.
Olsson
,
K.
Astrom
,
C. Canudas
de Wit
,
M.
Gafvert
, and
P.
Lischinsky
, “
Friction models and friction compensation
,”
Eur. J. Control
, vol
4
, pp.
176
195
, Dec.
1998
.
13.
M.
Algrain
, “
High-bandwidth attitude jitter determination for pointing and tracking systems
,”
SPIE Opt. Eng.
, vol.
36
, no.
7
, pp.
2092
2100
, July
1997
.
14.
J.
Medbery
and
L.
Germann
, “
Specification of precision optical pointing systems
,”
Proc. SPIE
, vol.
1489
, pp
163
176
,
1991
.
15.
L.
Stockum
, L.A.,
E.
Burge
, and
G.
Plunk
, “
Electro-mechanical design for precision pointing and tracking systems
,”
Proc. SPIE
, vol.
779
, pp.
66
74
,
1987
.
16.
A. V.
Kuleshov
and
V. V.
Fateev
,
Instruments and Systems: Monitoring
,
Control, and Diagnostics.
12
,
7
13
(
2017
).
17.
J.
Royalty
, “
Development of kinematics for gimballed mirror systems
,”
Proc. SPIE
, vol.
1304
, pp.
262
274
,
1990
.
18.
J.
Hilkert
, “
A comparison of inertial line-of-sight stabilization techniques using mirrors
,”
Proc. SPIE
, paper 5403-02, pp.
13
22
, Mar.
2004
.
19.
S.
Jenkins
and
J.
Hilkert
, “
Line-of-sight stabilization using image motion compensation
,”
Proc. SPIE, Acquisition, Tracking, and Pointing III
, vol.
1111
, pp.
98
115
,
1989
.
20.
J.
Zaremba
, “
A biaxial fast steering mirror for precision optical pointing systems
,” in
Proc. AIAA Control Conf., paper AIAA-1988-4108
,
1988
, pp.
471
478
.
This content is only available via PDF.
You do not currently have access to this content.