The problems of possible changes in the shape of aircraft in the process of movement are considered. Approaches to the detection of deformations in the process of motion are proposed. The efficiency of using such generalized parameters as dynamic coefficients is shown. A system is obtained in the deviations of the motion parameters of undeformed and deformed bodies and formulas are derived for changes in dynamic coefficients. The possibility of using not only traditional identification approaches, but also new methods of data mining, was noted, including the most informative indicators of state for the studied deformed bodies were determined. The ability to assess the presence of deformations based on calculations of indicators based on the results of measurements of angular velocities, inclination of the trajectory and angles of attack is shown on multiple simulations of the motion of undeformed and deformed bodies. Effective ways of storing the reference information are proposed taking into account analyzes of the characteristics of the bodies under investigation for the presence of critical sections, in which it is proposed to estimate the acceptable step enlargement based on the analysis of the Pareto front relative derivative (increment) of the function.

1.
Sun
H.
,
Yu
J
,
Siyu
Zhang
S.
The Control of Asymmetric Rolling Missiles Based on Improved Trajectory Linearization Control Method //
J. Aerosp. Technol. Manag., São Josédos Campos, Vol.
8
, No
3
, pp.
319
327
, Jul.-Sep.,
2016
2.
Abbas
L.K.
,
Chen
D.
,
Rui
X.
Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket
.
Hindawi Publishing Corporation International Journal of Aerospace Engineering Volume
2014
, Article ID 478534,
11
p.
3.
Dongyang
C.
,
Abbas
L.K.
,
Xiaoting
R.
Numerical simulation of a spinning stabilized projectile aerodynamic characteristics effected by structure errors //
Acta Aerodynamica Sinica
32
(
5
):
705
-
711
. October
2014. DOI
:
4.
Ogunwa
T.
,
Abdullah
E.J.
Flight dynamics and control modelling of damaged asymmetric aircraft
//Article (PDF Available) · October
2016
. DOI:
5.
Nguyen
N.
,
Krishnakumar
K.
,
Kaneshige
J.
Dynamics and Adaptive Control for Stability Recovery of Damaged Asymmetric Aircraft //
NASA Ames Research Center
,
Moffett Field, CA 94035
. University of California, Davis, CA 95616
6.
Dykes
J.W.
Projectile linear theory for aerodynamically asymmetric projectiles //
Georgia Institute of Technology. December
2011
7.
Hodges
D.
A New Approach to Aeroelastic Response, Stability and Loads of Missiles and Projectiles.
Final Report, U.S. Army Research Office Grant 40448-EG. 15 July 2015 [Электронный ресурс]. – Режим доступа http://www.researchgate.net/publication/235079207 (дата обращения: 28.01.2019)
8.
Yi
W.
,
Sun
D.
,
Tan
J.
,
Yuan
D.
Experimental research on aeroelasticity of a large length to diameter ratio projectile
.
Fourth International Symposium on Physics of Fluids (ISPF4) International Journal of Modern Physics: Conference Series
Vol.
19
(
2012
) p.
270
275
9.
Tihomirov
D.
,
Raveh
D.
Nonlinear Aerodynamic Effects on Static Aeroelasticity of Flexible Missiles //
Conference: AIAA Scitech 2019. Conference Paper
. January
2019
. DOI:
10.
Kitson
R.C.
,
Cesnik
C.E.S.
Multidisciplinary Effects on High-Speed Vehicle Performance and Stability //
Conference: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Conference Paper
. January
2018. DOI
:
11.
Kiran
K.
,
Cholleti
R.
Static Aeroelastic Analysis on Two Stage Rocket Body //
International Journal of Engineering Research & Technology (IJERT)
. ISSN: 2278-0181. November
2015
. Vol.
4
. Issue
11
.
12.
Dongyang
C.
,
Abbas
L.K.
,
Xiaoting
R.
,
Guoping
W.
Aerodynamic and static aeroelastic computations of a slender rocket with all- movable canardsurface
// First Published June 12,
2017
Research Article.
13.
RuHao
H
,
Zheng
Y.Y.
,
Lei
Y.
Effect of elastic deformation on flight dynamics of projectiles with large slenderness ratio //
erospace Science and Technology. September
2017. DOI
:
14.
Brejão
L.F.
,
Manoel
R.
A 2-DOF model of an elastic rocket structure excited by a follower force //
XVIII Brazilian Colloquium on Orbital Dynamics (2016
).
IOP Conf. Series: Journal of Physics: Conf. Series
911
(
2017
)
012020
doi :
15.
Mokin
YU.A.
Vliyanie malyh uglov ataki i skol'zheniya na moment krena pri giperzvukovom obtekanii tel vrashcheniya //
Teplofizika i aehromekhanika.
2009
. tom 16. № 1. (In Russ.)
16.
Komissarenko
A. I.
,
Maksimov
F. A.
Osobennosti dinamiki poleta tela pri nalichii asimmetrij //
XL Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Korolyova i drugih vydayushchihsya otechestvennyh uchenyh – pionerov osvoeniya kosmicheskogo prostranstva: sbornik tezisov
. M.:MGTU im. N.EH. Baumana.
2015
.
17.
Fresconi
F.
,
Guidos
B.
,
Celmins
I.
,
Hathaway
W.
Flight Behavior of an Asymmetric Body through Spark Range Experiments using Roll- Yaw Resonance for Yaw Enhancement//
AIAA Atmospheric Flight Mechanics Conference San Diego
,
California, USA
.
AIAA SciTech Forum.
January
2016
.(AIAA 2016-0782).
18.
Tong
L.
,
Ji
H.
Multi-body dynamic modelling and flight control for an asymmetric variable sweep morphing UAV //
The Aeronautical Journal
June
2014
Volume
118
No
1204
19.
Romanova
I. K.
,
Solov'ev
V. S.
Razrabotka matrichnogo metoda opisaniya geometrii i rascheta aehrodinamicheskih harakteristik tel s proizvol'no iskrivlennoj os'yu Nauka i obrazovanie, EHlektronnoe nauchno-tekhnicheskoe izdanie MGTU im. N.EH. Baumana. #
11
, noyabr'
2012
DOI: . (In Russ.).
20.
Romanova
I.K.
Solov'ev V.S. Parametricheskie issledovaniya dinamiki nekotoryh vidov deformirovannyh tel //
Voprosy oboronnoj tekhniki.
Seriya 16.
2016.-
7-8 (97-98).- S
.
82
89
. (In Russ.)
21.
Romanova
I.K.
Modelirovaniye ustoychivosti dvizheniya deformirovannykh udlinennykh tel na osnove variatsiy uglovykh skorostey krena. Trudy SPIIRAN
.
Vypusk
18
(
3
),
2019
.
This content is only available via PDF.
You do not currently have access to this content.