In this paper, energy and exergy based analysis on cascade vapour compression refrigeration system (CVCRS) with Au-CNT, Ag-CNT and HAuCl4-CNT composite nanoparticles were performed. Au-CNT, Ag-CNT and HAuCl4- CNT composite nanoparticles were suspended using two step method with polyalkylene glycol which was used as lubricant. First and second law of thermodynamics were applied to investigate energetic and exergetic performance of CVCRS six composite nanoparticles combination such as Au-CNT, Ag-CNT and HAuCl4-CNT with 0.2% Au and 0.025% CNT, 0.2% Au and 0.05% CNT, 0.2% Ag and 0.025% CNT, 0.2% Ag and 0.05% CNT, 0.2% HAuCl4 and 0.025% CNT, 0.2% HAuCl4 and 0.05% CNT volume percentages. R134a was used as refrigerant in low temperature circuit (LTC) and high temperature circuit (HTC) for experimentation. The energy and exergy analysis based on experimental results show that for the composite nanoparticles 0.2% Au and 0.05% CNT volume percentage, the evaporator cooling time required and work input to LTC and HTC compressors and exergy losses of components and system are lowest. For 0.2% Au and 0.05% CNT, the actual COP of 3.205, refrigeration efficiency of 49.2% and exergy efficiency of 17.8% are maximum compared to other nanoparticles combination.

1.
G.
Eggen
and
K.
Aflekt
,
Commercial refrigeration with ammonia and CO2 as working fluids
, In:
Proceedings of the Third IIR: Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway
, pp.
281
292
,
1998
.
2.
A.
Pearson
and
P.
Cable
,
A distribution warehouse with CO2 as refrigerant, In: Proceedings of the international Congress of Refrigeration
,
Washington, DC, USA
,
2003
.
3.
G.J.
Van Riessen
, CO2/NH3
Supermarket Refrigeration System with CO2 in the Cooling and Freezing Section
,
TNO Environment, Energy and Process Innovation, Apeldoorn
,
Netherlands
, http://www.energie.nl/nel/nl05e1210.html,
2004
.
4.
J.
Zhang
and
Q.
Xu
,
Cascade refrigeration system synthesis based on exergy analysis
,
Comput. Chem. Eng.
,
35
, pp.
1901
1914
(
2011
).
5.
Murat
hosoz
,
Performance comparison of single stage and cascade refrigeration systems using R134A as the working fluid
,
Turkish J. Eng. Env. Sci.
,
29
, pp.
285
296
(
2005
).
6.
L.
Pigani
,
M.
Boscolo
and
N.
Pagan
,
Marine refrigeration plants for passenger ships: Low-GWP refrigerants and strategies to reduce environmental impact
,
Int. J. Refrig.
,
64
, pp
80
92
(
2016
).
7.
Evangelos Bellos and Christos Tzivanidis
,
A comparative study of CO2 refrigeration systems
,
Energ. Convers. Manage.: X
,
1
,
100002
(
2019
).
8.
O.
Rezayan
and
A. Ali
Behbahaninia
,
Thermo-economic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems
,
Energy
,
36
, pp.
888
895
(
2011
).
9.
J.
Alberto
Dopazo and Jose Fernandez-Seara, Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications
,
Int. J. Refrig.
,
34
, pp
257
267
(
2011
).
10.
X.
Shuxue
and
M.
Guoyuan
,
Exergy analysis for quasi two-stage compression heat pump system coupled with ejector
,
Exp. Therm. Fluid Sci.
,
35
, pp.
700
705
(
2011
).
11.
M. Idrus
Alhamid
,
Nasruddin
Nasruddin
,
R.B.S.
Darwin
and
Arnas
Lubis
,
Characteristics and COP of cascade refrigeration system using hydrocarbon refrigerant (Propane, Ethane and CO2) at low temperature circuit (LTC
),
Int. J. Technol.
,
4
(
2
), pp.
112
120
(
2013
).
12.
H. A.
Shah
and
B. R. G.
Kapadia
,
Thermodynamic analysis of cascade refrigeration system using R508B - R404A for vaccine manufacturing application
,
GIT J. Eng. Technol.
5
, (
2012
).
13.
U. S.
Choi
,
Enhancing thermal conductivity of fluids with nanoparticles
,
ASME FED
231
, pp
99
103
,
1995
.
14.
J.A.
Eastman
,
U.S.
Choi
,
S.
Li
,
L.J.
Thompson
, and
S.
Lee
,
Enhanced thermal conductivity through the development of nanofluids
,
Nanophase and Nanocomposite Materials II, MRS
,
Pittsburg, PA
, pp.
3
11
(
1997
).
15.
W.
Jiang
,
G.
Ding
and
H.
Peng
,
Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants
,
Int. J Therm. Sci.
,
48
(
6
),
1108
1115
(
2009
).
16.
R.
Saidur
,
S. N.
Kazi
,
M. S.
Hossain
,
M. M.
Rahman
, and
H. A.
Mohammed
,
A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems
,
Renew. Sust. Energ. Rev
,
15
(
1
), pp
310
323
(
2011
).
17.
S. S.
Sanukrishnaa
,
B. Maneesh
Murukan
,
B.
Prakash
and
M.
Jose
,
An overview of experimental studies on nanorefrigerants
,
Recent Research, Development and Applications
,
88
,
552
577
(
2018
).
18.
G.
Ding
,
H.
Peng
,
W.
Jiang
, and
Y.
Gao
,
The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture
,
Int. J. Refrig.
,
32
(
1
),
114
123
(
2009
).
19.
I. M.
Mahbubul
,
R.
Saidur
, and
M. A.
Amalina
,
Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube
,
Procedia Eng.
,
56
, pp
323
329
(
2013
).
20.
I. M.
Mahbubul
,
R.
Saidur
, and
M. A.
Amalina
,
Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant
,
Int. Commun. Heat Mass
,
43
, pp
100
104
(
2013
).
21.
W.
Jiang
,
G.
Ding
,
H.
Peng
,
Y.
Gao
, and
K.
Wang
,
Experimental and model research on nanorefrigerant thermal conductivity
,
HVAC&R Res.
,
15
(
3
), pp
651
669
(
2009
).
22.
Liu
Ms
,
Lin
MCC
,
Huang
IT
,
Wang
CC
,
Enhancement of thermal conductivity with CuO for Nanofluids
,
Chem. Eng. Technol.
,
29
(
1
), pp.
72
77
(
2006
).
23.
S.
Bi
,
L.
Shi
and
L.
Zhang
,
Performance study of a domestic refrigerator using R134a/mineral oil/nano-TiO2 as working fluid
,
ICR07-B2-346
,
2007
.
24.
J. C.
Loaiza
,
Valdez
,
Pruzaesky
,
F.
Chaviano
and
P.J.A.
Reis
,
A Numerical Study on the Application of Nanofluids in Refrigeration Systems
,
International Refrigeration and Air Conditioning Conference
, Paper 1145,
2010
.
25.
S. A.
Fadhilah
,
R. S.
Marhamah
, and
A. H. M.
Izzat
,
Copper oxide nanoparticles for advanced refrigerant thermophysical properties: Mathematical modeling
,
J. Nanoparticles.
, ,
2014
.
26.
S.
Bi
,
K.
Guo
,
Z.
Liu
, and
J.
Wu
,
Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid
,
Energy Conversion and Management
,
52
(
1
), pp
733
737
(
2011
).
27.
K.
Saravanan
and
R.
Vijayan
,
Performance of Al2O3/TiO2 nano composite particles in domestic refrigerator
,
J. Exp. Nanosci.
,
13
(
1
) pp.
245
257
(
2018
).
28.
S.
Sundararaj
,
R. Sasi
kumar
,
Shake
misshal
,
C.
Siddharth
and
V.
Soundar
,
The effect of refrigerant pairs on performance of multi-cycle vapour compression system
,
Advances in Natural and Applied Sciences
,
10
(
7
), pp.
112
122
(
2016
).
29.
S.
Sundararaj
,
M.
Hariharan
and
S.
Chandrakanth
,
An investigation report on ejector refrigeration system
,
Int. J. Appl. Eng. Res.
,
10
(
3
) pp.
2520
2524
(
2015
).
30.
G.
Sriharan
, and
S.
Harikrishnan
,
Improved performance of composite phase change material for thermal energy storage
,
Materials Today: Proceedings
,
5
(
6
), pp.
14215
14224
(
2018
).
31.
K.
Mohan
,
S.
Sundararaj
,
K. Gopi
Kannan
and
A.
Kannan
,
Experimental analysis on refrigeration system using CNT, gold & HAuCl4 nano fluids
,
Materials Today: Proceedings
, ,
2020
.
32.
Manoj
Dixit
,
S.C.
Kaushik
and
Akhilesh
Arora
,
Energy and exergy analysis of absorption-compression cascade refrigeration system
,
J. Therm. Eng.
,
2
(
6
), Special Issue 5, pp.
995
1006
(
2016
).
33.
V.
Velagapudi
,
R. K.
Konijeti
and
C.S.K.
Aduru
,
Empirical correlations to predict thermo-physical heat transfer characteristics of nanofluids
,
J. Therm. Sci.
,
12
, pp
27
37
(
2008
).
34.
Yunus A.
Cengel
,
Michael A.
Boles
,
Thermodynamics: An Engineering Approach
, Fifth Edition.
35.
A.
Hepbasli
,
Thermodynamic analysis of household refrigerators
,
Int. J. En. Res.
,
31
, pp.
947
959
(
2007
).
36.
E.
Halimic
,
D.
Ross
,
B.
Agnew
,
A.
Anderson
and
I.
Potts
,
A comparison of the operating performance of alternative refrigerants
,
Appl. Therm. Eng.
,
23
, pp.
1441
1451
(
2003
).
37.
Bayram
Kılıç
,
Osman
İpek
,
Sinan
Uğuz
,
Evaluating on exergy analysis of refrigeration system with two-stage and economiser
,
Int. J. Eng. Appl. Sci.
,
4
(
4
), pp.
15
25
(
2012
).
38.
Arora
,
A.
,
Kaushik
,
S.C.
,
Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A
.
Int. J. Refrig.
,
31
, pp.
998
1005
(
2008
).
39.
Arnemann and Michael
,
Energy efficiency of refrigeration system
,
International Refrigeration and Air Conditioning Conference.
Paper 1356. http://docs.lib.purdue.edu/iracc/1356,
2012
.
This content is only available via PDF.
You do not currently have access to this content.