Scaffolds creation by three-dimensional printing in the field of tissue engineering has supported medical and patient groups in response to the scarcity of organ implants. Traditional methods of scaffold production have many complications associated with poor mechanical and architectural properties. Three-dimensional printing provides a huge platform to solve these problems; the challenge arises in the selection of material which should be printable satisfying the scaffold requirements, the acceptability of these printed scaffolds on insertion to the host body. This review condenses relevant works and advancement considering the following domains, representing bio-ceramics, their material and printing characteristics, discusses present problems and further improvement of materials with enhancers to improve overall properties of scaffolds for biomedical applications.

1.
H.
Montazerian
,
M.
Zhianmanesh
,
E.
Davoodi
,
A. S.
Milani
, and
M.
Hoorfar
, “
PT
,”
Mater. Des.
,
2017
.
2.
R.
Mala
and
A. S. R.
Celsia
,
Bioceramics in orthopaedics: A review
.
Elsevier Ltd
.,
2018
.
3.
D. H.
Kohn
, “
David H. Kohn
,”
2004
.
4.
F. J. O.
Brien
, “
Biomaterials & scaffolds Every day thousands of surgical procedures are performed to replace
,”
Mater. Today
, vol.
14
, no.
3
, pp.
88
95
,
2011
.
5.
M.
Rabionet
,
A. J.
Guerra
,
T.
Puig
, and
J.
Ciurana
, “
3D-printed tubular scaffolds for vascular tissue engineering
,”
Procedia CIRP
, vol.
68
, no. April, pp.
352
357
,
2018
.
6.
F. A.
Shah
and
J.
Czechowska
,
Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
, Second Edition.
Elsevier Ltd
.,
2018
.
7.
B. I.
Oladapo
,
S. A.
Zahedi
, and
A. O. M.
Adeoye
, “
3D printing of bone sca ff olds with hybrid biomaterials
,”
Compos. Part B
, vol.
158
, no. July
2018
, pp.
428
436
,
2019
.
8.
N.
Sinha
, “
Additive Manufacturing
.”
9.
B.
Nematollahi
,
M.
Xia
, and
J.
Sanjayan
, “
Current Progress of 3D Concrete Printing Technologies
,” no. Isarc,
2017
.
10.
L.
Robiglio
,
P.
Appendino
,
F.
Bassi
,
G.
Martinasso
,
G.
Muzio
, and
R.
Canuto
, “
Development of glass – ceramic scaffolds for bone tissue engineering : Characterisation, proliferation of human osteoblasts and nodule formation
,” vol.
3
, pp.
199
208
,
2007
.
11.
W.
Liu
,
Y.
Li
,
J.
Liu
,
X.
Niu
,
Y.
Wang
, and
D.
Li
, “
Application and Performance of 3D Printing in Nanobiomaterials
,” vol.
2013
,
2013
.
12.
D.
Singh
,
3D bioprinting for scaffold fabrication
.
Elsevier Ltd
.,
2018
.
13.
A. K.
Chandrakar
and
A.
Kachhawaha
, “
Application of Additive Manufacturing on Three Dimensional Printing
,” vol.
4
, no.
6
, pp.
2012
2016
,
2015
.
14.
T.
Peng
,
K.
Kellens
,
R.
Tang
,
C.
Chen
, and
G.
Chen
, “
Sustainability of additive manufacturing : An overview on its energy demand and environmental impact
,”
Addit. Manuf.
, vol.
21
, no. April, pp.
694
704
,
2018
.
15.
P. D.
Eason
, “
Powder Metallurgy & Mining Additive Manufacturing : A Renaissance for Powder Metallurgy Research
,” vol.
3
, no.
2
, p.
9806
,
2014
.
16.
I. D.
Harris
and
D.
Ph
, “
Development and Implementation of Metals Additive Manufacturing Current Landscape in Additive Manufacturing
.”
17.
F.
Van Der Klift
,
Y.
Koga
,
A.
Todoroki
,
M.
Ueda
, and
Y.
Hirano
, “
3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic ( CFRTP ) Tensile Test Specimens
,” no. January, pp.
18
27
,
2016
.
18.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing ( 3D printing ): A review of materials, methods, applications and challenges
,”
Compos. Part B
, vol.
143
, no. February, pp.
172
196
,
2018
.
19.
T. G.
Spears
and
S. A.
Gold
, “
In-process sensing in selective laser melting ( SLM ) additive manufacturing
,”
Integr. Mater. Manuf. Innov.
,
2016
.
20.
P.
Morouço
,
S.
Biscaia
,
C.
Moura
, and
N. M.
Alves
, “
Material Science and Engineering with Advanced Research Biomedical Applications from a Direct Digital Manufacturing Perspective
,” pp.
15
17
,
2015
.
21.
T.
Almela
,
I. M.
Brook
,
K.
Khoshroo
,
M.
Rasoulianboroujeni
,
F.
Fahimipour
,
M.
Tahriri
,
E.
Dashtimoghadam
,
A.
El-awa
, and
L.
Tayebi
, “
Author ’ s Accepted Manuscript scaffolds
,”
Bioprinting
,
2017
.
22.
K.
Tappa
and
U.
Jammalamadaka
, “
Novel Biomaterials Used in Medical 3D Printing Techniques
,”
2018
.
23.
P.
Riches
,
L.
Jia
,
G.
Turnbull
,
J.
Clarke
,
F.
Han
,
B.
Li
, and
W.
Shu
, “
Bioactive Materials 3D bioactive composite scaffolds for bone tissue engineering d e
,”
2017
.
24.
S.
Guessasma
,
W.
Zhang
,
J.
Zhu
,
S.
Belhabib
, and
H.
Nouri
, “
Challenges of additive manufacturing technologies from an optimisation perspective
,” no. Figure 1,
2016
.
25.
R.
Paper
,
Y.
Yao
,
D.
Chen
,
L.
Wang
, and
X.
Yang
, “
Additive Manufacturing Cloud via Peer-robot Collaboration Regular Paper
,”
2016
.
26.
S. C.
Cox
,
J. A.
Thornby
,
G. J.
Gibbons
,
M. A.
Williams
, and
K. K.
Mallick
, “
3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications
,”
Mater. Sci. Eng. C
, vol.
47
,
2014
.
27.
Q.
Yan
,
H.
Dong
,
J.
Su
,
J.
Han
,
B.
Song
,
Q.
Wei
, and
Y.
Shi
, “
A Review of 3D Printing Technology for Medical Applications
,”
Engineering
, no. July,
2018
.
28.
K.
Pluta
,
D.
Malina
, and
A.
Sobczak-kupiec
, “
SCAFFOLDS FOR TISSUE ENGINEERING
.”
29.
I.
Sabree
,
J. E.
Gough
, and
B.
Derby
, “
Mechanical properties of porous ceramic scaffolds : In fl uence of internal dimensions
,”
2015
.
30.
K. V
Wong
and
A.
Hernandez
, “
A Review of Additive Manufacturing
,” vol.
2012
,
2012
.
31.
L.
Zhang
,
G.
Yang
,
B. N.
Johnson
, and
X.
Jia
, “
Three-dimensional (3D) Printed Scaffold and Material Selection for Bone Repair
,”
Acta Biomater.
, no. November,
2018
.
32.
A.
Khandan
,
N.
Ozada
,
S.
Saber-samandari
, and
M.
Ghadiri
, “
On the mechanical and biological properties of bredigite-magnetite
,”
Ceram. Int.
, vol.
44
, no.
3
, pp.
3141
3148
,
2017
.
33.
H.
Shao
,
Y.
He
,
J.
Fu
,
D.
He
, and
X.
Yang
, “
Journal of the European Ceramic Society scaffolds with high strength and adjustable degradation
,”
J. Eur. Ceram. Soc.
,
2016
.
34.
A.
Anwar
and
S.
Akbar
, “
Author ’ s Accepted Manuscript
,”
Ceram. Int.
,
2018
.
35.
J.
Maurath
and
N.
Willenbacher
, “
Journal of the European Ceramic Society 3D printing of open-porous cellular ceramics with high specific strength
,”
J. Eur. Ceram. Soc.
,
2017
.
36.
Q.
Chen
,
F.
Baino
,
S.
Spriano
, and
N. M.
Pugno
, “
Modelling of the strength – porosity relationship in glass-ceramic foam scaffolds for bone repair
,”
J. Eur. Ceram. Soc.
,
2014
.
37.
S.
Prasadh
,
R.
Chung
, and
W.
Wong
, “
Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects
,”
Oral Sci. Int.
, vol.
8643
, no.
18
,
2018
.
38.
D.
Ke
and
S.
Bose
, “
Effects of dense core and porous surface design and MgO/ZnO on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by ink-jet 3D printing
,”
Addit. Manuf.
,
2018
.
39.
Z.
Ruan
,
D.
Yao
,
Q.
Xu
,
L.
Liu
,
Z.
Tian
, and
Y.
Zhu
, “
Effects of mesoporous bioglass on physicochemical and biological properties of calcium sulfate bone cements
,”
Appl. Mater. Today
,
2017
.
40.
C.
Sun
,
X.
Tian
, and
L.
Wang
, “
Author ’ s Accepted Manuscript
,”
Ceram. Int.
,
2016
.
41.
F. C.
Rodríguez
,
R. P.
Ma
,
F. J. N.
Cárceles
, and
P. G.
Martínez
, “
Revista Española de Cirugía Ortopédica y Traumatología 3D printing utility for surgical treatment of acetabular fractures ଝ
,” vol.
62
, no.
4
,
2018
.
42.
S.
Kargozar
,
F.
Baino
,
S.
Hamzehlou
,
R. G.
Hill
, and
M.
Mozafari
, “
Bioactive Glasses : Sprouting Angiogenesis in Tissue Engineering
,”
Trends Biotechnol.
, vol.
36
, no.
4
, pp.
430
444
,
2018
.
43.
M.
Mbarki
,
P.
Sharrock
,
M.
Fiallo
, and
H.
Elfeki
, “
PT
,”
Mater. Sci. Eng. C
,
2017
.
44.
R.
Kontio
,
R.
Björkstrand
,
M.
Salmi
,
M.
Paloheimo
,
K.
Paloheimo
,
J.
Tuomi
, and
A. A.
Mäkitie
, “
Designing and Additive Manufacturing A Prototype for A Novel Instrument for Mandible Fracture Reduction
,” pp.
2
4
,
2012
.
45.
G.
Poologasundarampillai
,
D.
Wang
,
S.
Li
,
J.
Nakamura
,
R.
Bradley
,
P. D.
Lee
,
M. M.
Stevens
,
D. S.
Mcphail
,
T.
Kasuga
, and
J. R.
Jones
, “
Acta Biomaterialia Cotton-wool-like bioactive glasses for bone regeneration
,”
2014
.
46.
R.
Mala
and
A. S. R.
Celsia
,
Bioceramics in orthopaedics: A review
.
Elsevier Ltd
.,
2018
.
47.
K.
Kowalski
,
M. U.
Jurczyk
,
P. K.
Wirstlein
,
J.
Jakubowicz
, and
M.
Jurczyk
, “
Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained ( Mg-4Y-5. 5Dy-0. 5Zr ) alloy
,”
Mater. Sci. Eng. B
, vol.
219
, pp.
28
36
,
2017
.
48.
A. M.
Deliormanl
, “
In vitro assessment of degradation and bioactivity of robocast bioactive glass scaffolds in simulated body fluid
,” vol.
38
, pp.
6435
6444
,
2012
.
49.
S.
Bose
,
D.
Banerjee
,
A.
Shivaram
,
S.
Tarafder
, and
A.
Bandyopadhyay
, “
US CR
,”
Mater. Des.
, no.
2017
, p. #pagerange#,
2018
.
50.
M.
Vaezi
,
G.
Zhong
,
H.
Kalami
, and
S.
Yang
,
10. Extrusion-based 3D printing technologies for 3D scaffold engineering
.
Elsevier Ltd
,
2018
.
51.
L.
Chin
,
S.
Rajoo
,
A.
Mohd
,
N.
Ahmad
, and
M. B.
Uday
, “
Recent advances in 3D printing of porous ceramics : A review
,”
Curr. Opin. Solid State Mater. Sci.
, vol.
21
, no.
6
, pp.
323
347
,
2017
.
52.
A. E.
Jakus
,
N. R.
Geisendorfer
,
P. L.
Lewis
, and
R. N.
Shah
, “
3D-Printing Porosity: A New Approach to Creating Elevated Porosity Materials and Structures
,”
Acta Biomater.
,
2018
.
53.
R. C.
Dutta
,
M.
Dey
,
A. K.
Dutta
, and
B.
Basu
, “
US CR
,”
Biotechnol. Adv.
,
2017
.
54.
A.
Thomas
,
K. C. R.
Kolan
,
M. C.
Leu
, and
G. E.
Hilmas
, “
Journal of the Mechanical Behavior of Biomedical Materials Freeform extrusion fabrication of titanium fi ber reinforced 13 – 93 bioactive glass sca ff olds
,” no. September,
2016
.
55.
E.
Mioduski
and
C.
Mauricio
, “
Anodic bonding of titanium alloy with bioactive glass
,”
J. Non. Cryst. Solids
, no. March, pp.
0
1
,
2017
.
56.
B.
Thavornyutikarn
,
P.
Tesavibul
,
N.
Chatarapanich
,
B.
Feltis
,
F. A.
Paul
, and
T. W.
Turney
,
PT
.
Elsevier B.V
,
2017
.
57.
M.
Shoaib
,
A.
Saeed
,
M.
Saif
,
U.
Rahman
, and
M. M.
Naseer
, “
PT US CR
,”
Mater. Sci. Eng. C
,
2017
.
58.
A.
Thomas
,
K. C. R.
Kolan
,
M. C.
Leu
, and
G. E.
Hilmas
, “
Journal of the Mechanical Behavior of Biomedical Materials Freeform extrusion fabrication of titanium fi ber reinforced 13 – 93 bioactive glass scaffolds
,”
J. Mech. Behav. Biomed. Mater.
, vol.
70
, pp.
43
52
,
2016
.
59.
E. A.
Aguilar-reyes
,
C. A.
León-patiño
,
E.
Villicaña-molina
,
V. I.
Macías
, and
L.
Lefebvre
, “
Processing and in vitro bioactivity of high-strength 45S5 glass-ceramic sca ff olds for bone regeneration
,”
Ceram. Int.
, no. February, pp.
0
1
,
2017
.
60.
L.
Bertolla
,
J.
Mertens
,
M.
Kotoul
,
P.
Skalka
,
P.
Marcián
, and
N.
Chawla
, “
Mechanics of Materials Crack bridging modelling in Bioglass ® based scaffolds reinforced by poly-vinyl alcohol / microfibrillated cellulose composite coating ̌ ich Ševe c
,”
2017
.
61.
N.
Cui
,
J.
Qian
,
J.
Wang
,
C.
Ji
,
W.
Xu
, and
H.
Wang
, “
Preparation, physicochemical properties and biocompatibility of PBLG / PLGA / bioglass composite scaffolds
,”
Mater. Sci. Eng. C
, vol.
71
, pp.
118
124
,
2016
.
62.
S.
Eqtesadi
,
A.
Motealleh
,
R.
Wendelbo
,
A. L.
Ortiz
, and
P.
Miranda
, “
Journal of the European Ceramic Society Reinforcement with reduced graphene oxide of bioactive glass scaffolds fabricated by robocasting
,”
J. Eur. Ceram. Soc.
,
2016
.
63.
S.
Hydroxyapatite
,
T. T.
Tang
,
L.
Qin
,
Y.
Lai
,
M.
Alini
,
J. D.
De Bruijn
,
H.
Yuan
, and
R. G.
Richards
, “
Surface-Enrichment with Hydroxyapatite Nanoparticles in Stereolithography-Fabricated Composite Polymer Scaffolds Promotes Bone Repair
,”
Acta Biomater.
,
2017
.
64.
A.
Nommeots-nomm
,
S.
Labbaf
,
A.
Devlin
,
N.
Todd
,
H.
Geng
,
A. K.
Solanki
,
H. M.
Tang
,
P.
Perdika
,
A.
Pinna
,
O.
Tsigkou
,
P. D.
Lee
,
M.
Hossein
,
N.
Esfahani
,
C. A.
Mitchell
, and
J. R.
Jones
,
Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration
.
Acta Materialia Inc
.,
2017
.
65.
R.
Wang
,
P.
Zhu
,
W.
Yang
,
S.
Gao
,
B.
Li
,
Q.
Li
,
P.
Zhu
,
W.
Yang
,
S.
Gao
, and
B.
Li
, “
Accepted Manuscript
,” no.
2017
,
2018
.
66.
J.
Deubener
,
M.
Allix
,
M. J.
Davis
,
A.
Duran
,
T.
Höche
,
T.
Honma
,
T.
Komatsu
,
S.
Krüger
,
I.
Mitra
,
R.
Müller
,
S.
Nakane
,
M. J.
Pascual
,
J. W. P.
Schmelzer
,
E. D.
Zanotto
, and
S.
Zhou
, “
Updated de fi nition of glass-ceramics
,” no. December 2017, pp.
4
11
,
2018
.
67.
A.
Nommeots-nomm
,
P. D.
Lee
, and
J. R.
Jones
, “
Direct ink writing of highly bioactive glasses
,”
J. Eur. Ceram. Soc.
,
2017
.
68.
P. N.
De Aza
, “
Cerámica y Vidrio
,” no. August 2015,
1999
.
69.
A.
Zocca
,
C. M.
Gomes
,
E.
Bernardo
,
R.
Müller
,
J.
Günster
, and
P.
Colombo
, “
LAS glass – ceramic scaffolds by three-dimensional printing
,”
J. Eur. Ceram. Soc.
, vol.
33
, no.
9
, pp.
1525
1533
,
2013
.
70.
F. M.
Stábile
and
C.
Volzone
, “
Bioactivity of Leucite Containing Glass-ceramics Using Natural Raw Materials
,”
2014
.
71.
H.
Roh
,
C.
Lee
,
Y.
Hwang
,
M.
Kook
,
S.
Yang
,
D.
Lee
, and
B.
Kim
, “
Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone / hydroxyapatite scaffolds for improving bone regeneration
,”
MSC
,
2016
.
72.
S.
Dikici
and
O.
Karaman
, “
ScienceDirect The effect of zinc oxide doping on mechanical and biological properties of 3D printed calcium sulfate based scaffolds
,”
2017
.
73.
S.
Meininger
,
S.
Mandal
,
A.
Kumar
,
J.
Groll
,
B.
Basu
, and
U.
Gbureck
, “
Acta Biomaterialia Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds
,”
ACTA Biomater.
,
2015
.
74.
K. C. R.
Kolan
,
M. C.
Leu
,
G. E.
Hilmas
, and
M.
Velez
, “
Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering
,”
J. Mech. Behav. Biomed. Mater.
, vol.
13
, pp.
14
24
,
2012
.
75.
H.
Elsayed
,
P.
Colombo
, and
E.
Bernardo
, “
Journal of the European Ceramic Society Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers
,”
J. Eur. Ceram. Soc.
,
2017
.
76.
L.
Fiocco
,
H.
Elsayed
,
J. K. M. F.
Daguano
,
V. O.
Soares
, and
E.
Bernardo
, “
Silicone resins mixed with active oxide fi llers and Ca – Mg Silicate glass as alternative / integrative precursors for wollastonite – diopside glass-ceramic foams
,”
J. Non. Cryst. Solids
, vol.
416
, pp.
44
49
,
2015
.
77.
M.
Shamsi
,
M.
Karimi
,
M.
Ghollasi
,
N.
Nezafati
,
M.
Shahrousvand
,
M.
Kamali
, and
A.
Salimi
, “
In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly-l-lactic acid nanofibers fabricated by electrospinning method
,”
Mater. Sci. Eng. C
,
2017
.
78.
I.
Denry
,
O.
Goudouri
,
D. C.
Fredericks
,
M. R.
Acevedo
, and
J. A.
Holloway
, “
Strontium-releasing fluorapatite glass-ceramic scaffolds: structural characterization and in vivo performance
,”
Acta Biomater.
,
2018
.
79.
S.
Eqtesadi
,
A.
Motealleh
,
A.
Pajares
, and
P.
Miranda
, “
Effect of milling media on processing and performance of 13-93 bioactive glass scaffolds fabricated by robocasting
,”
Ceram. Int.
, pp.
1
11
,
2014
.
80.
Q. Z.
Chen
,
I. D.
Thompson
, and
A. R.
Boccaccini
, “
45S5 Bioglass s -derived glass – ceramic scaffolds for bone tissue engineering
,” vol.
27
, pp.
2414
2425
,
2006
.
81.
D.
He
,
C.
Zhuang
,
S.
Xu
,
X.
Ke
,
X.
Yang
,
L.
Zhang
,
G.
Yang
,
X.
Chen
,
X.
Mou
,
A.
Liu
, and
Z.
Gou
, “
Bioactive Materials 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances
,”
Bioact. Mater.
, vol.
1
, no.
1
, pp.
85
92
,
2016
.
82.
A.
Shahin-shamsabadi
,
A.
Hashemi
,
M.
Tahriri
, and
F.
Bastami
, “
Materials Science & Engineering C Mechanical, material, and biological study of a PCL / bioactive glass bone sca ff old : Importance of viscoelasticity
,”
Mater. Sci. Eng. C
, vol.
90
, no. March, pp.
280
288
,
2018
.
83.
B.
Kim
,
S.
Yang
, and
C.
Sang
, “
Colloids and Surfaces B : Biointerfaces Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite sca ff old using an ε -polycaprolactone polymer emulsion coating method for bone tissue engineering
,”
Colloids Surfaces B Biointerfaces
, vol.
170
, no. February, pp.
421
429
,
2018
.
84.
G.
Rodriguez
,
J.
Dias
,
M.
Akira
, and
P.
Bártolo
, “
Influence of Hydroxyapatite on Extruded 3D Scaffolds
,”
Procedia Eng.
, vol.
59
, pp.
263
269
,
2013
.
85.
H.
Wang
,
G.
Wu
,
J.
Zhang
,
K.
Zhou
,
B.
Yin
,
X.
Su
,
G.
Qiu
,
G.
Yang
,
X.
Zhang
,
G.
Zhou
, and
Z.
Wu
, “
Colloids and Surfaces B : Biointerfaces Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold
,”
Colloids Surfaces B Biointerfaces
, vol.
141
, pp.
491
498
,
2016
.
86.
H.
Surface
,
M.
Properties
,
Q.
Wei
,
Y.
Wang
,
X.
Li
,
K.
Wang
,
W.
Chai
, and
Y.
Zhang
, “
Author ’ s Accepted Manuscript Study the Bonding Mechanism of Binders on Hydroxyapatite Surface and Mechanical Properties for 3DP Fabrication Bone
,”
J. Mech. Behav. Biomed. Mater.
,
2015
.
87.
J.
Li
,
Q.
Xu
,
B.
Teng
,
C.
Yu
,
J.
Li
,
L.
Song
,
Y.
Lai
,
J.
Zhang
,
W.
Zheng
, and
P.
Ren
, “
Acta Biomaterialia Investigation of angiogenesis in bioactive 3-dimensional poly ( D, L -lactide-co-glycolide )/ nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect
,”
Acta Biomater.
, vol.
42
, pp.
389
399
,
2016
.
88.
F.
Senatov
,
N.
Anisimova
,
M.
Kiselevskiy
, and
A.
Kopylov
, “
Polyhydroxybutyrate / Hydroxyapatite Highly Porous Scaffold for Small Bone Defects Replacement in the Nonload-bearing Parts
,”
J. Bionic Eng.
, vol.
14
, no.
4
, pp.
648
658
,
2017
.
89.
A. C. S.
Dantas
,
D. H.
Scalabrin
,
R.
De Farias
,
A. A.
Barbosa
,
V.
Andrea
, and
C.
Wirth
, “
Design of Highly Porous Hydroxyapatite Scaffolds by Conversion of 3D Printed Gypsum Structures – a Comparison Study
,”
Procedia CIRP
, vol.
49
, pp.
55
60
,
2016
.
90.
M. A.
Kebede
,
K.
Sabrina
,
T.
Imae
,
M.
Kawakami
,
H.
Furukawa
, and
C.
Mou
, “
Journal of the Taiwan Institute of Chemical Engineers Stereolithographic and molding fabrications of hydroxyapatite-polymer gels applicable to bone regeneration materials
,”
J. Taiwan Inst. Chem. Eng.
,
2018
.
91.
K.
Zhou
,
X.
Zhang
,
Z.
Chen
,
L.
Shi
, and
W.
Li
, “
Author â€TM s Accepted Manuscript
,”
Ceram. Int.
,
2015
.
92.
T.
Sui
,
E.
Salvati
,
H.
Zhang
,
K.
Nyaza
,
F. S.
Senatov
,
A. I.
Salimon
, and
A. M.
Korsunsky
, “
Probing the complex thermo-mechanical properties of a 3D-printed polylactide-hydroxyapatite composite using in situ synchrotron X-ray scattering
,”
J. Adv. Res.
, no. xxxx,
2018
.
93.
B.
Kim
,
S.
Yang
, and
C.
Sang
, “Colloids and Surfaces B : Biointerfaces Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite sca ff old jsing an ε -polycaprolactone polymer emulsion coating method for bone tissue engineering,”
Colloids Surfaces B Biointerfaces
, vol.
170
, no. June, pp.
421
429
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.