Increasing various types of drug-resistant bacteria is one of the biggest public health challenges today. One alternative step is to use biological methods to obtain nanoparticles, which are environmentally friendly, economical, and synthesis. This research focuses on the use of biowaste products, namely Punica granatum (P. granatum) peel extract, to synthesize silver nanoparticles (AgNPs) and determine their characterization and effect on various oral pathogens. The AgNPs prepared using a green synthesis process with a solution of P. granatum peel extract for reducing silver nitrate (AgNO3). The characterization of the formation of silver nanoparticles from peel extract characterized by the UV-Vis spectrum and Particle Size Analyzer (PSA). Antibacterial assays performed after 24 hours by measuring the minimum inhibitory concentration (MIC). Treatment for two types of Gram-negative bacteria, such as Actinobacillus actinomycetemcomitans, Pseudomonas aeruginosa and two types of Gram-positive bacteria namely Enterococcus faecalis, Staphylococcus aureus. The results showed that the formation of a dark brown solution was the success of P. granatum skin extract producing AgNPs. The UV-Vis spectra surface of AgNPs showed strong resonance centered at 403-415 nm after reacting for 1 hour and 24 hours. Particle size distribution AgNPs using the PSA test showed the homogeneously results. MIC results showed high antibacterial activity on all oral pathogens tested. Increased concentrations of AgNPs show more significant results to reduce the number of bacteria. AgNPs are synthesizing with P. granatum peel extracts produced by the green synthesis method can be a new ingredient for antibacterial drugs against oral bacteria.

1.
F. A.
Scannapieco
and
A.
Cantos
, “
Oral inflammation and infection, and chronic medical diseases: implications for the elderly
,”
Periodontol. 2000
,
72
(
1
) :
153
175
(
2016
).
2.
P. A.
Reichart
,
A. M.
Schmidt-Westhausen
,
P.
Khongkhunthian
, and
F. P.
Strietzel
, “
Dental implants in patients with oral mucosal diseases - a systematic review
,”
J. Oral Rehabil.
,
43
(
5
) :
388
399
(
2016
).
3.
A. E.
Akca
,
G.
Akca
,
F. T.
Topçu
,
E.
Macit
,
L.
Pikdöken
, and
I. Ş.
Özgen
, “
The Comparative Evaluation of the Antimicrobial Effect of Propolis with Chlorhexidine against Oral Pathogens: An in Vitro Study
,”
Biomed Res. Int.
ID3627463:
1
8
(
2016
).
4.
D.K.R.
Bardají
,
J.J.M.
da Silva
, and
T.B.
Bianchi
, “
Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens
,”
Anaerobe
40
:
18
27
(
2016
).
5.
M.
Kilian
,
I.
Chapple
,
M.
Hannig
, “
The oral microbiome–an update for oral healthcare professionals
,”
Nature
221
:
657
666
(
2016
).
6.
F.
Hajifattahi
,
E.
Moravej-Salehi
,
M.
Taheri
,
A.
Mahboubi
, and
M.
Kamalinejad
, “
Antibacterial Effect of Hydroalcoholic Extract of Punica granatum Linn. Petal on Common Oral Microorganisms
,”
Int. J. Biomater.
8098943
:
1
6
(
2016
).
7.
S.
Busi
and
J.
Rajkumari
, “
Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications
,”
Nanoparticles Pharmacother.
Chap. 15, pp.
485
524
(
2019
).
8.
SD.
Astuti
,
NDG.
Drantantiyas
,
AP.
Putra
,
PS.
Puspita
,
A.
yahrom
,
Suhariningsih, Photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm with exogenous chlorophyll of Dracaena angustifolia leaves
,
Biomedical Photonic
,
2019
,
8
(
2
):
4
13
9.
K. S.
Kaye
,
A. C.
Gales
, and
G.
Dubourg
, “
Old Antibiotics for Multidrug-Resistant Pathogens: From in Vitro Activity to Clinical Outcomes
.”
Int. J. Antimicrob. Agents
,
49
(
5
:
542
548
(
2017
).
10.
G. A.
Durand
,
D.
Raoult
, and
G.
Dubourg
, “
Antibiotic discovery: history, methods and perspectives
,”
Int. J. Antimicrob. Agents
53
(
4
) :
371
382
(
2019
).
11.
E.M.
Setiawatie
,
V.P.
Lestari
,
S.D.
Astuti
, “
Comparison of anti bacterial efficacy of photodynamic therapy and doxycycline on aggregatibacter actinomycetemcomitans
,”
Afr., J. Infect. Dis.
12(S):
95
103
(
2018
)
12.
S.D.
Astuti
,
Z.A.
Ma'rifah
,
N.
Fitriyah
,
A.H.
Zaidan
,
D. Arifianto dan E.M.
Setiawatie
, “
The effectiveness of nano-doxycycline Activated by Diode Laser Exposure to Reduce S. aureus Biofilms: an in vitro Study
”,
Proc. SPIE Conf.
1086311
(
2019
).
13.
N.
Cassir
,
J.M.
Rolain
, and
P.
Brouqui
. “
A New Strategy to Fight Antimicrobial Resistance: The Revival of Old Antibiotics
.”
Front. Microbiol. 5:
1
15
(
2014
).
14.
V. M.
D'Costa
et al.
, “
Antibiotic resistance is ancient
,”
Nature
477
(
7365
:
457
461
(
2011
).
15.
W.-R.
Li
,
X.-B.
Xie
,
Q.-S.
Shi
,
S.-S.
Duan
,
Y.-S.
Ouyang
, and
Y.-B.
Chen
, “
Antibacterial effect of silver nanoparticles on Staphylococcus aureus
,”
BioMetals.
24
(
1
:
135
141
(
2011
).
16.
M.
Beykaya
and
A.
Çaglar
, “
An Investigation on Synthesis of Silver-Nanoparticles (AgNP) and their Antimicrobial effectiveness by using Herbal Extracts
,”
Afyon Kocatepe Univ. J. Sci. Eng.
16
(
3
:
631
41
(
2016
).
17.
R. A.
Bapat
 et al., “
The Use of Nanoparticles as Biomaterials in Dentistry
.”
Drug Discov. Today
24
(
1
:
85
98
(
2019
).
18.
A.
Besinis
,
S. D.
Hadi
,
H. R.
Le
,
C.
Tredwin
, and
R. D.
Handy
, “
Antibacterial Activity and Biofilm Inhibition by Surface Modified Titanium Alloy Medical Implants Following Application of Silver, Titanium Dioxide and Hydroxyapatite Nanocoatings
.”
Nanotoxicology
11
(
3
:
327
38
(
2017
).
19.
G.
Nam
,
S.
Rangasamy
,
B.
Purushothaman
, and
J. M.
Song
, “
The Application of Bactericidal Silver Nanoparticles in Wound Treatment
,”
Nanomater. Nanotechnol.
5:
1
23
(
2015
).
20.
P.
Heera
and
S.
Shanmugam
, “
Nanoparticle Characterization and Application : An Overview
.”
Int. J. Curr. Microbiol. Appl. Sci.
4
(
8
:
379
386
(2015).
21.
S. K.
Kailasa
,
T.-J.
Park
,
J. V.
Rohit
, and
J. R.
Koduru
, “
Chapter 14 – Antimicrobial activity of silver nanoparticles
,”
Nanoparticles in Pharmacotherapy
, Chap. 14, pp.
461
484
(
2019
).
22.
A.
Roy
,
O.
Bulut
,
S.
Some
,
A. K.
Mandal
, and
M. D.
Yilmaz
, “
Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity
,”
RSC Adv.
,
9
(
5
) :
2673
2702
(
2019
).
23.
S.
Devanesan
et al.
, “
Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract
,”
Nanoscale Res. Lett.
13
(
1
:
315
325
(
2018
).
24.
B.
Sadeghi
and
F.
Gholamhoseinpoor
, “
A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature
,”
Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
134 :
310
315
(
2015
).
25.
S.
Kaul
,
N.
Gulati
,
D.
Verma
,
S.
Mukherjee
, and
U.
Nagaich
, “
Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances
.”
J. Pharm.
2018:
1
19
(
2018
).
26.
K. S.
Siddiqi
,
A.
Husen
, and
R. A. K.
Rao
, “
A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties
.”
J. Nanobiotechnology
16
(
1
):
1
14
(
2018
).
27.
H.
Palza
, “
Antimicrobial Polymers with Metal Nanoparticles
.”
Int. J. Mol. Sci.
16
(
1
):
2099
2116
(
2015
).
28.
M. M.
Imani
and
M.
Safaei
, “
Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents
,”
J. Nanotechnol.
2019:
1
6
(
2019
).
29.
E.
Rasouli
 et al., “
Ultrasmall superparamagnetic Fe3O4 nanoparticles: honey-based green and facile synthesis and in vitro viability assay
.,”
Int. J. Nanomedicine
13:
6903
6911
(
2018
).
30.
M. D.
Balakumaran
,
R.
Ramachandran
,
P.
Balashanmugam
,
D. J.
Mukeshkumar
, and
P. T.
Kalaichelvan
, “
Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens
,”
Microbiol. Res.
182:
8
20
(
2016
).
31.
J.A.S.
Souza
,
D.B.
Barbosa
,
A.A.
Berretta
,
J.G. do
Amaral
,
L.F
Gorup
,
F.N
de Souza
. “
Green Synthesis of Silver Nanoparticles Combined to Calcium Glycerophosphate: Antimicrobial and Antibiofilm Activities
.”
Future Microbiol.
13
(
3
):
345
357
(
2018
).
32.
I.-M.
Chung
,
I.
Park
,
K.
Seung-Hyun
,
M.
Thiruvengadam
, and
G.
Rajakumar
, “
Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications
,”
Nanoscale Res. Lett.
11
(
1
):
1
40
(
2016
).
33.
S.D.
Astuti
,
P.S.
Puspita
,
A.P.
Putra
,
A.H.
Zaidan
,
M.Z.
Fahmi
,
A.
Syahrom
and Suhariningsih, “
The antifungal agent of silver nanoparticles activated by diode laser as light source to reduce C. albicans biofilms: an in vitro study
,”
Lasers Med. Sci.
34
(
5
):
929
937
(
2019
).
34.
C.
Mauricio
, “
Method for Producing Orthopaedic and Dental Acrylic Materials Having=Antimicrobial Properties, Using Copper Nanoparticle Technology
,”
Patent Application Publication
( 10 ) Pub. No.: US 2015 / 0063087 A1 (
2015
).
35.
S. A.
Al-gburi
, M. Sc. Thesis.
Selçuk Üniversitesi Fen Bilimleri Enstitüsü
(
2013
).
36.
D.
Pawar
,
P.
Mourya
,
O.
Kamble
, and
A.
Patil
, “
Potential of Silver Nanoparticles ( AgNPs ) Producing
.”
Int. J. Mol. Sci.
7
(
5
):
1392
1399
(
2018
).
37.
M.
Shanmugavadivu
,
S.
Kuppusamy
, and
R.
Ranjithkumar
, “
Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extracty
,”
Am. J. Adv. Drug Deliv
2
(
2
):
174
182
(
2014
).
38.
P.
Mohanpuria
,
N. K.
Rana
, and
S. K.
Yadav
, “
Biosynthesis of Nanoparticles: Technological Concepts and Future Applications
.”
J. Nanoparticle Res.
10
(
3
):
507
517
(
2008
).
39.
A.
Kennas
,
H.
Amellal-chibane
,
F.
Kessal
, and
F.
Halladj
, “
Effect of pomegranate peel and honey fortification on physicochemical, physical, microbiological and antioxidant properties of yoghurt powder
,”
J. Saudi Soc. Agric. Sci.
, (Article in press) pp.
1
10
(
2018
).
40.
M. N.
Nadagouda
,
N.
Iyanna
,
J.
Lalley
,
C.
Han
,
D. D.
Dionysiou
, and
R. S.
Varma
, “
Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts
,”
ACS Sustain. Chem. Eng.
,
2
(
7
):
1717
1723
(
2014
).
41.
B. S.
Butola
,
A.
Gupta
, and
A.
Roy
, “
Multifunctional fi nishing of cellulosic fabric via facile, rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules
,”
Sustain. Chem. Pharm.
12
(December 2018):
100
135
(
2019
).
42.
M. A.
Esawy
,
T. I. M.
Ragab
,
A.
Shimaa
,
G.
Shalaby
,
M.
Basha
, and
M.
Emam
, “
Biocatalysis and Agricultural Biotechnology Evaluated bioactive component extracted from Punica granatum peel and its Ag NPs forms as mouthwash against dental plaque
,”
Biocatal. Agric. Biotechnol.
18
(March):
101
107
(
2019
).
43.
M. F.
Baran
, “
Green Synthesis of Silver Nanoparticles (Agnps) Using Pistacia Terebinthus Leaf Extract: Antimicrobial Effect and Characterization
,”
Iternl J. Math, Eng And Natur Scienc.
2602
(
5
) :
2018
44.
S.
Nur
,
K.
Shameli
,
M. T.
Wong
, “
Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract
J. Mol. Struct.
,
1189
(Aug):
57
65
(
2019
).
46.
Annu
,
S.
Ahmed
,
K
,
Gurpreet
, and
I
,
Saiqa
, “
Evaluation of antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles
,”
RSC .li. Toxic Res.,
29
(May
2018
) 1–22
47.
A.
Monira
and
Abd-El-Aziz
R. M
, “
Effect of Green synthesis silver nanoparticles from five fruits peel on protein capped and anti-fungal properties
,”
Int. J. Adv. Res. Biol. Sci.,
6
(
2
):
156
165
(
2019
).
48.
R.
Kumar
,
S. M.
Roopanb
,
A.
Prabhakarn
,
V. G.
Khanna
, and
S.
Chakroborty
, “
Agricultural waste
Annona squamosa peel extract: Biosynthesis of silver nanoparticles
,”
Spectrochimica Acta., Part A
,
90
(
2012
):
173
.
49.
M.
Prathap
,
A.
Alagesan
,
B. D.
Kumari
, “
Anti-bacterial activities of silver nanoparticles synthesized from plant leaf extract of
Abutilon indicum (L.) Sweet
,”
Springer. J. Nanostructure Chem.,
4
(September):
106
(
2014
)
This content is only available via PDF.
You do not currently have access to this content.