This paper compares the quality of segmentation of echocardiographic images of the left ventricle of the heart using 5 architectures and 38 pre-trained encoders. As part of the study, we trained 1140 neural networks. On the test dataset, the accuracy was 93.18% according to the Dice metric, which is more than our previous result at 92.78%. On cross-validation, the accuracy was 98.79%, which is higher than the previous result of 90.15%.

1.
P.
Libby
,
R.
Bonow
,
D.
Mann
and
D.
Zipes
,
Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set
, (
Elsevier Health Sciences
,
2007
)
2.
G.
Carneiro
,
J.
Nascimento
, and
A.
Freitas
, "The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods",
IEEE Transactions on Image Processing
(
IEEE
,
2011
) Vol.
21
(
3
), pp.
968
982
.
3.
E.
Shelhamer
,
J.
Long
, and
T.
Darrell
, "Fully Convolutional Networks for Semantic Segmentation" in
IEEE Transactions on Pattern Analysis and Machine Intelligence
(
IEEE
,
2017
), pp.
3431
3440
.
4.
O.
Ronneberger
,
P.
Fischer
and
T.
Brox
, "
U-net: Convolutional networks for biomedical image segmentation
" in
International Conference on Medical image computing and computer-assisted intervention
(
Springer
,
Cham
,
2015
), pp.
234
241
.
5.
H.
Zhao
,
J.
Shi
,
X.
Qi
,
X.
Wang
and
J.
Jia
, "Pyramid scene parsing network" in
Proceedings of the IEEE conference on computer vision and pattern recognition
(
IEEE
,
2017
), pp.
2881
2890
.
6.
S.
Seferbekov
,
V.
Iglovikov
,
A.
Buslaev
and
A.
Shvets
, "
Feature Pyramid Network for Multi-Class Land Segmentation
" in
CVPR Workshops
(
2018
), pp.
272
275
.
7.
A.
Chaurasia
and
E.
Culurciello
, "Linknet: Exploiting encoder representations for efficient semantic segmentation" in
IEEE Visual Communications and Image Processing (VCIP)
(
IEEE
,
2017
), pp.
1
4
.
8.
H.
Li
,
P.
Xiong
,
J.
An
and
L.
Wang
, "
Pyramid attention network for semantic segmentation
", arXiv preprint arXiv:1805.10180.
9.
K.
He
,
X.
Zhang
,
S.
Ren
and
J.
Sun
, "Deep residual learning for image recognition" in
Proceedings of the IEEE conference on computer vision and pattern recognition
(
IEEE
,
2016
), pp.
770
778
.
10.
S.
Xie
,
R.
Girshick
et al.
, "Aggregated residual transformations for deep neural networks" in
Proceedings of the IEEE conference on computer vision and pattern recognition
(
IEEE
,
2017
), pp.
1492
1500
.
11.
Y.
Chen
,
J.
Li
,
H.
Xiao
,
X.
Jin
,
S.
Yan
, and
J.
Feng
, "
Dual path networks
" in
Advances in neural information processing systems
(
2017
), pp.
4467
4475
.
12.
K.
Simonyan
, and
A.
Zisserman
, "
Very deep convolutional networks for large-scale image recognition
", arXiv preprint arXiv:1409.1556.
13.
J.
Hu
,
L.
Shen
, and
G.
Sun
, "Squeeze-and-excitation networks" in
Proceedings of the IEEE conference on computer vision and pattern recognition
(
IEEE
,
2018
), pp.
7132
7141
.
14.
G.
Huang
,
Z.
Liu
,
L.
Van Der Maaten
, and
K.
Weinberger
, "
Densely connected convolutional networks
" in
Proceedings of the IEEE conference on computer vision and pattern recognition
(
IEEE
,
2017
), pp.
4700
4708
.
15.
C.
Szegedy
,
S.
Ioffe
,
V.
Vanhoucke
, and
A.
Alemi
, "
Inception-v4, inception-resnet and the impact of residual connections on learning
" in
Thirty-first AAAI conference on artificial intelligence
(
2017
), pp.
4278
4284
.
16.
A.
Howard
,
M.
Zhu
et al.
, "
Mobilenets: Efficient convolutional neural networks for mobile vision applications
", arXiv preprint arXiv:1704.04861.
17.
F.
Chollet
,
"Xception: Deep learning with depthwise separable convolutions" in
Proceedings of the IEEE conference on computer vision and pattern recognition
(
IEEE
,
2017
), pp.
1251
1258
.
18.
A.
Krizhevsky
,
I.
Sutskever
, and
G.
Hinton
, "
Imagenet classification with deep convolutional neural networks
" in
Advances in neural information processing systems
(
2012
), pp.
1097
1105
.
19.
A.
Sheka
,
V.
Samun
,
T.
Chumarnaya
, and
O.
Solovyova
,
"Segmentation of the Left Ventricle on EchoCG Images Using MultiResUnet" in
2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)
(
2019
), pp.
0775
0779
.
20.
V.
Zyuzin
and
T.
Chumarnaya
, "
Comparison of Unet architectures for segmentation of the left ventricle endocardial border on two-dimensional ultrasound images
" in
2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)
(
2019
), pp.
110
113
.
21.
R.
Kohavi
, "
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
",
International Joint Conference of Artificial Intelligence
(
1995
), Vol
14
(
2
), pp.
1137
1145
.
22.
D. P.
Kingma
and
J.
Ba
, "
Adam: A method for stochastic optimization
", arXiv preprint arXiv:1412.6980.
23.
H.
Robbins
and
S.
Monro
, "
A stochastic approximation method
" in
The annals of mathematical statistics
, (
1951
), pp.
400
407
.
24.
N.
Ketkar
, "Introduction to pytorch" in
Deep learning with python
, (
Springer
,
2017
), pp.
195
208
.
25.
A.
Buslaev
,
A.
Parinov
,
E.
Khvedchenya
,
V.
Iglovikov
, and
A.
Kalinin
, "
Albumentations: fast and flexible image augmentations
", arXiv preprint arXiv:1809.06839.
This content is only available via PDF.
You do not currently have access to this content.