The fracture toughness coefficient Kc of the composite ceramics for medical applications based on hydroxy-apatite (HA) with additives of multi-walled carbon nanotubes (MWCNTs) were investigated. Sintering of the composites was carried out at a temperature of 1100°C in an argon atmosphere. The rate of the heating up to temperature of sintering was 20 K/min. HA is a bioactive matrix, and the additives of MWCNTs were used with the purpose of increasing the fracture toughness coefficient Kc. Nanoindentation tests were carried out using microhardness tester Affri DM8 with Vickers pyramid-shaped diamond indenter under a load of 4.9 N. It was found that the additives of MWCNTs with the concentration up to 0.5 wt % lead to a small increase of the Kc of the composite.

1.
A.
Indra
,
R.
Firdaus
,
I. H.
Mulyadi
, and
J.
Affi
,
Ceram. Int.
1–7
(
2020
). doi (in press)
2.
A. A.
White
,
S. M.
Best
, and
I. A.
Kinloch
,
Int. J. Appl. Ceram. Technol.
4
(
1
),
1
13
(
2007
).
3.
K. V.
Elumeeva
,
V. L.
Kuznetsov
,
A. V.
Ischenko
,
R.
Smajda
,
M.
Spina
,
L.
Forró
, and
A.
Magrez
,
AIP Adv.
3
(
11
),
112101
-
1
–8 (
2013
).
4.
I. N.
Mazov
,
I. A.
Ilinykh
,
V. L.
Kuznetsov
,
A. A.
Stepashkin
,
K. S.
Ergin
,
D. S.
Muratov
,
V. V.
Tcherdyntsev
,
D. V.
Kuznetsov
, and
J.-P.
Issi
,
J. All. Comp.
586
(
1
),
440
442
(
2014
).
5.
M.
Sadat-Shojai
,
M.-T.
Khorasani
,
E.
Dinpanah-Khoshdargi
, and
A.
Jamshidi
,
Act. Biomater.
9
(
8
),
7591
7621
(
2013
).
6.
H.
Siddiqui
,
K.
Pickering
, and
M.
Mucalo
,
Materials
11
(
10
),
1813
1845
(
2018
).
7.
M. I.
Bagatskii
,
M. S.
Barabashko
,
A. V.
Dolbin
, and
V. V.
Sumarokov
,
Low Temp. Phys.
38
(
6
),
523
528
(
2012
).
8.
V. V.
Sumarokov
,
A.
Jezowski
,
D.
Szewczyk
,
M. I.
Bagatskii
,
M. S.
Barabashko
,
A. N.
Ponomarev
,
V. L.
Kuznetsov
, and
S. I.
Moseenkov
,
Low Temp. Phys.
45
(
3
),
347
354
(
2019
).
9.
M. S.
Barabashko
,
M. V.
Tkachenko
,
A. A.
Neiman
,
A. N.
Ponomarev
, and
A. E.
Rezvanova
,
Appl. Nanosci.
1-8
(
2019
). doi (in press).
10.
A. A.
Leonov
and
E. S.
Dvilis
,
Nanotechnologies Russia
14
(
3-4
),
118
124
(
2019
).
11.
K.
Balani
,
R.
Anderson
,
T.
Laha
,
M.
Andara
,
J.
Tercero
,
E.
Crumpler
, and
A.
Agarwal
,
Biomaterials
28
(
4
),
618
624
(
2007
).
12.
D.
Lahiri
,
V.
Singh
,
A. K.
Keshri
,
S.
Seal
, and
A.
Agarwal
,
Carbon
48
(
11
),
3103
3120
(
2010
).
13.
S. K.
Sarkar
,
M. H.
Youn
,
I. H.
Oh
, and
B. T.
Lee
,
Mater. Sci. Forum
534–536
,
893
896
(
2007
).
14.
Y. H.
Meng
,
C. Y.
Tang
,
C. P.
Tsui
, and
P. S.
Uskokovic
,
J. Compos. Mater.
44
,
871
882
(
2010
).
15.
Y.
Bai
,
M. P.
Neupane
,
I. S.
Park
,
M. H.
Lee
,
T. S.
Bae
,
F.
Watari
, and
M.
Uo
,
Mater. Sci. Eng. C
30
(
7
),
1043
1049
(
2010
).
16.
Y.-P.
Guo
,
Y.-B.
Ya
,
C.-Q.
Ning
,
L.-F.
Chu
, and
Y.-J.
Guo
,
Mater. Lett.
65
,
1007
1009
(
2011
).
17.
K.
Niihara
,
R.
Morena
, and
D. P. H.
Hasselman
,
J. Mater. Sci. Lett.
1
(
1
),
13
16
(
1982
).
18.
J. B.
Phelps
,
G. B.
Hubbard
,
X.
Wang
, and
C. M.
Agrawal
,
J. Biomed. Mater. Res.
51
(
4
),
735
741
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.