The molecular dynamics method is used to study the features of nucleation and development of plasticity in nanocrystalline iron under shear loading in constrained conditions. The behavior of the material under loading is divided into several stages. On each of them the mechanisms of plastic deformation are revealed, which play the main role in the development of structural rearrangements in the loaded sample. It is shown that the nucleation and slip of dislocations plays a significant role in the development of plasticity at all stages of deformation. Subsequently, along with intragranular slip, grain boundary sliding is activated. Twinning leads to the localization of plastic deformation and changes grain shapes. At a further shear, the process of grain boundary migration is activated, which results in recrystallization of the deformed sample.

1.
H.
Conrad
,
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
35
,
2681
2695
(
2004
).
2.
I. A.
Ovid'ko
,
R. Z.
Valiev
, and
Y. T.
Zhu
,
Prog. Mater. Sci.
94
,
462
540
(
2018
).
3.
I. A.
Ovid'ko
,
J. Mater. Sci.
42
,
1694
1708
(
2007
).
4.
M. P.
Bondar
,
S. G.
Psakhie
,
A.I.
Dmitriev
, and
A.Yu.
Nikonov
,
Phys. Mesomech.
16
(
3
),
191
199
(
2013
).
5.
X.
Zhou
,
X.
Li
, and
K.
Lu
,
Phys. Rev. Lett.
122
,
126101
(
2019
).
6.
D. S.
Kryzhevich
,
K. P.
Zolnikov
, and
A. V.
Korchuganov
,
Comput. Mater. Sci.
153
,
445
448
(
2018
).
7.
K. P.
Zolnikov
,
D. S.
Kryzhevich
, and
A. V.
Korchuganov
,
Lett. Mater.
9
,
197
201
(
2019
).
8.
S. V.
Bobylev
and
I. A.
Ovid'Ko
,
Acta Mater.
88
,
260
270
(
2015
).
9.
Y.
Zhang
,
G. J.
Tucker
, and
J. R.
Trelewicz
,
Acta Mater.
131
,
39
47
(
2017
).
10.
L.
Wang
,
J.
Teng
,
P.
Liu
, et al.,
Nat. Commun.
5
,
1
7
(
2014
).
11.
E. N.
Hahn
and
M. A.
Meyers
,
Mater. Sci. Eng. A
646
,
101
134
(
2015
).
12.
I. Y.
Litovchenko
and
A. N.
Tyumentsev
,
Russ. Phys. J.
62
,
886
892
(
2019
).
13.
A. Y.
Smolin
,
E. V.
Shilko
,
S. V.
Astafurov
, et al.,
Def. Technol.
14
,
643
656
(
2018
).
14.
A.Yu.
Smolin
,
G. M.
Eremina
,
V. V.
Sergeev
, and
E. V.
Shilko
,
Phys. Mesomech.
17
(
4
),
292
303
(
2014
).
15.
G. M.
Eremina
and
A. Y.
Smolin
,
Facta Univ. Ser. Mech. Eng.
17
,
29
38
(
2019
).
16.
S. G.
Psakhie
,
A. V.
Dimaki
,
E. V.
Shilko
, and
S. V.
Astafurov
,
Int. J. Numer. Methods Eng.
106
,
623
643
(
2016
).
17.
A.
Shugurov
,
A.
Panin
,
A.
Dmitriev
, and
A.
Nikonov
,
Wear
408–409
,
214
221
(
2018
).
18.
K. P.
Zolnikov
,
A. V.
Korchuganov
,
D. S.
Kryzhevich
,
V. M.
Chernov
, and
S. G.
Psakhie
,
Phys. Mesomech.
22
(
5
),
355
364
(
2019
). doi
19.
K. P.
Zolnikov
,
A. V.
Korchuganov
,
D. S.
Kryzhevich
, and
S. G.
Psakhie
,
Phys. Mesomech.
21
(
6
),
492
497
(
2018
). doi
20.
A. V.
Korchuganov
,
K. P.
Zolnikov
, and
D. S.
Kryzhevich
,
Mater. Lett.
252
,
194
197
(
2019
).
21.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
22.
L.
Malerba
,
M. C.
Marinica
,
N.
Anento
, et al.,
J. Nucl. Mater.
406
,
19
38
(
2010
).
23.
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
4963
(
1987
).
24.
A.
Stukowski
and
K.
Albe
,
Model. Simul. Mater. Sci. Eng.
18
,
085001
(
2010
).
25.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.