A computational quasi-static model is proposed to simulate fracture in materials and along material interfaces. In any case, the cracks are modelled within the mechanical damage theory introducing two independent damage variables: one for domain damage, one for interface damage. The interface cracks are supposed to appear in a negligibly thin adhesive layer of an interface between two structural components so that cohesive zone models with generally prescribed stress-strain relationships can be implemented within a variationally based model. Similarly, the fracture in the material also considers an energy state and results in phase-field damage which brings about bulk degradation only in a narrow material strip forming the actual crack. The computational approach for finding an approximation of such a variational formulation includes a time stepping procedure with the solution at each instant being obtained by sequential quadratic programming algorithms implemented together with a finite element code.

1.
M.
Frémond
,
C.R. Acad. Sci., Paris, Sér.II
300
,
709
714
(
1985
).
2.
G.
Maugin
,
Mech. Res. Commun.
69
,
79
86
(
2015
).
3.
R.
Vodička
,
V.
Mantic
, and
T.
Roubicek
,
Meccanica
49
,
2933
2963
(
2014
).
4.
R.
Vodička
,
Eng. Anal. Bound. Elem.
62
,
123
140
(
2016
).
5.
R.
Vodička
and
V.
Mantic
,
Discrete Cont. Dyn. - S
10
,
1539
1561
(
2017
).
6.
R.
Vodička
,
Acta Mechanica Slovaca
23
,
42
48
(
2019
).
7.
R.
Vodička
,
Key Eng. Mat.
827 KEM
,
275
281
(
2020
).
8.
M.
Ortiz
and
A.
Pandolfi
,
Int. J. Numer. Meth. Eng.
44
,
1267
1282
(
1999
).
9.
K.
Park
and
G.
Paulino
,
Appl. Mech. Rev.
64
(
2011
), .
10.
G.
Francfort
,
B.
Bourdin
, and
J.-J.
Marigo
,
J. Elasticity
91
,
5
148
(
2008
).
11.
C.
Miehe
,
M.
Hofacker
, and
F.
Welschinger
,
Comput. Method. Appl. M.
199
,
2765
2778
(
2010
).
12.
M.
Paggi
and
J.
Reinoso
,
Comput. Method. Appl. M.
321
,
145
172
(
2017
).
13.
E.
Tanné
,
T.
Li
,
B.
Bourdin
,
J.-J.
Marigo
, and
C.
Maurini
,
J. Mech. Phys. Solids
110
,
80
99
(
2018
).
14.
J.
Sargado
,
E.
Keilegavlen
,
I.
Berre
, and
J.
Nordbotten
,
J. Mech. Phys. Solids
111
,
458
489
(
2018
).
15.
Z.
Dostál
, Optimal Quadratic Programming Algorithms,
Springer Optimization and Its Applications
, Vol.
23
(
Springer
,
Berlin
,
2009
).
16.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
(
Springer
,
New York
,
2006
).
17.
L.
Ambrosio
and
V.
Tortorelli
,
Commun. Pur. Appl. Math.
43
,
999
1036
(
1990
).
18.
O.
Zienkiewicz
,
R.
Taylor
, and
J.
Zhu
,
The Finite Element Method: Its Basis and Fundamentals
, 7th ed. (
Butterworth-Heinemann
,
Oxford, UK
,
2013
).
This content is only available via PDF.
You do not currently have access to this content.