The prediction of failure mechanisms in fibre-reinforced composite materials is of great importance for the design of composite engineering applications. With the aim of providing a tool able to predict and explain the initiation and propagation of damage in unidirectional fiber reinforced composites, in this contribution we develop a micromechanical numerical model based on a novel hybrid approach coupling the virtual element method (VEM) and the boundary element method (BEM). The BEM is a popular numerical technique, efficient and accurate, which has been successfully applied to interfacial fracture mechanics problems of fibre-reinforced composite materials. The VEM has recently emerged as a powerful and robust technique, capable of dealing with very general polygonal/polyhedral meshes, including very distorted mesh elements, and just very recently it has also been applied to fracture and damage problems. In the present model, the BEM is used to model the fiber inclusions, which are not supposed to develop non-linear deformations or damage/crack in their interior, while the VEM, which generalizes the features of FEM, is used to model the surrounding matrix material, which can develop more complex behaviors. The implemented technique has been applied to a simple fracture problem and some promising preliminary results are shown and discussed.

1.
E. B.
Tadmor
and
R. E.
Miller
,
Modeling materials: continuum, atomistic and multiscale techniques
(
Cambridge University Press
,
2011
).
2.
V. P.
Nguyen
,
M.
Stroeven
, and
L. J.
Sluys
,
Journal of Multiscale Modelling
3
,
229
270
(
2011
).
3.
M. H.
Aliabadi
,
The boundary element method, volume 2: applications in solids and structures
, Vol.
2
(
John Wiley & Sons
,
2002
).
4.
G.
Sfantos
and
M.
Aliabadi
,
Computer Methods in Applied Mechanics and Engineering
196
,
1310
1329
(
2007
).
5.
I.
Benedetti
and
M.
Aliabadi
,
Computer Methods in Applied Mechanics and Engineering
289
,
429
453
(
2015
).
6.
I.
Benedetti
and
M.
Aliabadi
,
Computer Methods in Applied Mechanics and Engineering
265
,
36
62
(
2013
).
7.
I.
Benedetti
,
V.
Gulizzi
, and
V.
Mallardo
,
International Journal of Plasticity
83
,
202
224
(
2016
).
8.
I.
Benedetti
and
V.
Gulizzi
,
International Journal of Fatigue
116
,
90
105
(
2018
).
9.
I.
Benedetti
,
V.
Gulizzi
, and
A.
Milazzo
,
Computer Methods in Applied Mechanics and Engineering
357
,
112595
(
2019
).
10.
L. Beirão
da Veiga
,
F.
Brezzi
,
A.
Cangiani
,
G.
Manzini
,
L. D.
Marini
, and
A.
Russo
,
Mathematical Models and Methods in Applied Sciences
23
,
199
214
(
2013
).
11.
E.
Artioli
,
L.
Beirão da Veiga
,
C.
Lovadina
, and
E.
Sacco
,
Computational Mechanics
60
,
355
377
(
2017
).
12.
L. B.
Da Veiga
,
A.
Russo
, and
G.
Vacca
,
ESAIM: Mathematical Modelling and Numerical Analysis
53
,
375
404
(
2019
).
13.
M. Lo
Cascio
,
A.
Milazzo
, and
I.
Benedetti
,
Composite Structures
232
,
111523
(
2020
).
14.
M. Lo
Cascio
,
A.
Milazzo
, and
I.
Benedetti
, “Virtual element method: Micro-mechanics applications,” in
Key Engineering Materials
, Vol.
827
(
Trans Tech Publ
,
2020
) pp.
128
133
.
15.
P. K.
Banerjee
and
R.
Butterfield
,
Boundary element methods in engineering science
(
McGraw-Hill
London
,
1981
).
16.
O.
Zienkiewicz
,
D.
Kelly
, and
P.
Bettess
,
International journal for numerical methods in engineering
11
,
355
375
(
1977
).
17.
C.
Brebbia
and
P.
Georgiou
,
Applied Mathematical Modelling
3
,
212
220
(
1979
).
18.
L.
Hong-Bao
,
H.
Guo-Ming
,
H. A.
Mang
, and
P.
Torzicky
,
Computer Methods in Applied Mechanics and Engineering
54
,
161
185
(
1986
).
19.
T.
Belytschko
,
H.
Chang
, and
Y.
Lu
,
Computers & structures
33
,
17
20
(
1989
).
20.
T.
Cruse
and
J.
Osias
, “
Issues in merging the finite element and boundary integral equation methods
,”
Mathematical and Computer Modelling
15
,
103
118
(
1991
).
21.
M.
Kuna
,
Finite elements in fracture mechanics
(
Springer
,
2013
).
22.
F.
París
,
E.
Correa
, and
V.
Mantič
,
Journal of Applied Mechanics
74
,
703
716
(
2007
).
23.
T. L.
Anderson
,
Fracture Mechanics: Fundamentals and Applications
, Fourth Edition (
CRC Press
,
2017
).
24.
F.
Erdogan
and
G. C.
Sih
,
Journal of Basic Engineering
85
,
519
525
(
1963
).
This content is only available via PDF.
You do not currently have access to this content.