The rapid evolution in internet communication technologies resulted in an increased interest for Home Automation Systems (HAS) providing unprecedented levels of interaction for the consumers and the professionals in the industry/business sectors. With the wide adoption of IoT (Internet of Things) technologies, critical sensing and actuation components have become affordable and interconnected. This enables Machine-to-Machine (M2M) scenarios and the implementation of standardized Home Automation Systems, utilizing interoperable components and not proprietary along with lock-up solutions. As a result, in the last ten years, a plethora of HAS is presented in the market, causing consumers confused about the pros and cons of the selection on which is the optimal solution. In this paper, the important metrics concerning the communication technologies used are presented by providing a more consolidated view of the most known technologies including open-source, proprietary, and standardized implementations. In the first part of the paper, a short review of the available technologies is presented followed by a more detailed comparison after the classification in four basic categories concerning: User interface, technical characteristics, security/quality, and cost, for wired and wireless technologies. Finally, appropriate metrics for the optimal selection are introduced.

1.
Apple Inc
.,
Apple Developer Documentation (Apple Developer Documentation
(
2018
, p. https://developer.apple.com/documentation/).
2.
SmartThings Inc, SmartThings
.
Add a little smartness to your things
. (
SmartThings. Add a Little Smartness to Your Things.
(
2020
, p. https://www.smartthings.com/about).
3.
Alexa - Keyword Research, Competitive Analysis, & Website Ranking
(
Alexa - Keyword Research, Competitive Analysis, & Website Ranking
(n.d., p. https://www.alexa.com/).
4.
BacNET, BACnet - The New Standard Protocol
(
BACnet - The New Standard Protocol
(
2018
, p. http://www.bacnet.org/Bibliography/EC-9-97/EC-9-97.html).
5.
KNX Association, KNX Association webpage
(
KNX Association Webpage
(
2015
, p.
1
http://www.knx.org/knx-en/index.php).
6.
Carlo
Gavazzi
S.A.,
Carlo Gavazzi Automation Components
(
Carlo Gavazzi Automation Components
(
2020
, p. http://gavazziautomation.com/nsc/ES/ES/company_profile).
7.
ZigBee
Alliance
,
ZigBee Alliance (ZigBee Alliance
2012
), pp.
1
.
8.
Z-Wave, Safer, smarter homes start with Z-Wave
. (
Safer, Smarter Homes Start with Z-Wave.
(
2020
, p. https://www.z-wave.com/).
9.
Bluetooth.com,
Medical | Bluetooth Technology Website
(
Medical | Bluetooth Technology Website
(
2013
, p. http://www.bluetooth.com/Pages/Medical.aspx).
10.
Gratton
.
D A
,
WiFi Alliance (WiFi Alliance
(
2007
, pp.
181
215
http://www.wi-fi.org/certification/programs).
11.
Insteon, Insteon (Insteon
(
2020
, p. https://www.insteon.com/).
12.
E.
Oberhaching
,
Energy Harvesting Wireless Sensor Solutions and Networks from EnOcean
(
Energy Harvesting Wireless Sensor Solutions and Networks from EnOcean
(
2016
, p. https://www.enocean.com/en/).
13.
Blowpan, FrontPage - 6lowpan Wiki
(FrontPage - 6lowpan Wiki (n.d., p. http://6lowpan.tzi.org/).
14.
Threadgroup, Home - threadgroup (Home - Threadgroup
(
2019
, p. https://www.threadgroup.org/).
15.
S.K. Pawan
Singh
,
Krupa
Chotalia
,
Sanket
Pingale
,
A Review Paper on Smart GSM Based Home Automation System
(
2016
),.
16.
C.
Withanage
,
R.
Ashok
,
C.
Yuen
, and
K.
Otto
,
A comparison of the popular home automation technologies
(
2014
IEEE Innov. Smart Grid Technol. - Asia, ISGT ASIA 2014 2014)
, pp.
600
605
.
17.
C.
Corporation
,
U.T.
Corporation
, and
C.
No
,
BACnet Basics User’s Guide
(
2013
),.
18.
Y.C.
Li
and
S.H.
Hong
,
BACnet-EnOcean Smart Grid Gateway and its application to demand response in buildings
(
Energy Build.
78
,
2014
), pp.
183
191
.
19.
D.
Fisher
and
M.
Osborne
,
BACnet Secure Connect A Secure Infrastructure for Building Automation
(n.d.),.
20.
L.K.
Haakenstad
,
The open protocol standard for computerized building systems: BACnet
(in
Proc. 1999 IEEE Int. Conf. Control Appl. (Cat. No.99CH36328) IEEE
, n.d., pp.
1585
1590
.
21.
V.
Marinakis
,
H.
Doukas
,
C.
Karakosta
, and
J.
Psarras
,
An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector
(
Appl. Energy
101
,
2013
), pp.
6
14
.
22.
V.
Marinakis
,
H.
Doukas
,
J.
Psarras
, and
A.
Adamopoulos
,
Interactive Software for Building Automation Systems towards Effective Energy and Eenvıronmental Management
(n.d.),.
23.
Ethernet Technologies: The Pursuit of Multi-Vendor Interoperability (n.d
.),.
24.
E.
Alliance
, TEF
2013
‘The Future of Ethernet’ Keynote Videos - Ethernet Alliance
(TEF 2013 – ‘The Future of Ethernet’ Keynote Videos - Ethernet Alliance (2020, p. http://ethernetalliance.org/tef-2013-the-future-of-ethernet-keynote/).
25.
P802.3ck - Standard for Ethernet Amendment: Physical Layer Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Based on 100 Gb/s Signaling
(P802.3ck - Standard for Ethernet Amendment: Physical Layer Specifications and Management Parameters for 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Based on 100 Gb/s Signaling (n.d., p. https://standards.ieee.org/project/802_3ck.html).
26.
P802.3cp - Standard for Ethernet Amendment: Bidirectional 10 Gb/s, 25 Gb/s, and 50 Gb/s Optical Access PHYs (P802.3cp - Standard for Ethernet Amendment: Bidirectional 10 Gb/s, 25 Gb/s, and 50 Gb/s Optical Access PHYs
(n.d., p. https://standards.ieee.org/project/802_3cp.html).
27.
P.C.
Jain
,
Recent trends in next generation terabit Ethernet and gigabit wireless local area network
(
2016 Int. Conf. Signal Process. Commun. ICSC 2016
201314
,
2016
), pp.
106
110
.
28.
Ethernet Alliance, Ethernet Alliance | New 2018 Ethernet Roadmap Looks to Future Speeds of 1.6 Terabits/s (Ethernet Alliance | New 2018 Ethernet Roadmap Looks to Future Speeds of 1.6 Terabits/S
(
2019
, p. https://ethernetalliance.org/library/article/new-2018-ethernet-roadmap-looks-to-future-speeds-of-1-6-terabitss/).
29.
D.
Feldman
and
V.
Oliva
,
Overview of 802.3bt - Power over Ethernet standard
(
2018
), pp.
0
6
.
30.
T.D.P.
Mendes
,
R.
Godina
,
E.M.G.
Rodrigues
,
J.C.O.
Matias
, and
J.P.S.
Catalão
,
Smart home communication technologies and applications: Wireless protocol assessment for home area network resources
(
Smart Home Communication Technologies and Applications: Wireless Protocol Assessment for Home Area Network Resources
(
2015
).
31.
Echelon Corporation
, Introduction to the LonWorks ® Platform revision 
2
(
Echelon Corp
.
2009
), pp.
1
98
.
32.
IAn
Bevers
,
Intelligence at the Edge Part 1: The Edge Node
(
2018714
) (
2019
), pp.
1
6
.
33.
G.
Bovet
,
J.
Hennebert
,
G.
Bovet
,
J.
Hennebert
,
W.
Gateways
, and E.N.
Inter-, Web-of-Things Gateways for KNX and EnOcean Networks To cite this version : HAL Id : hal-00872187
(
2013
),.
34.
S.
Oudji
,
S.
Courrèges
,
J.N.
Paillard
,
p.
Magneron
,
V.
Meghdadi
,
C.
Brauers
, and
R.
Kays
,
Radiofrequency interconnection between smart grid and smart meters using KNX-RF and 2.4 GHz standard protocols for efficient home automation applications
(
J. Commun.
10
,
2015
), pp.
812
820
.
35.
Q.
Chen
,
Q.
Zhong
,
D.
Sun
,
R.
Li
,
L.
Niu
, and
L.
Ding
,
ETN-Ethernet Transport Network for 5G Mobile Transport, Metro, and DCI Network
(
2018 IEEE Int. Conf. Commun. Syst. ICCS
2018
2018), pp.
332
336
.
36.
S.
Al-sarawi
,
M.
Anbar
,
K.
Alieyan
, and
M.
Alzubaidi
,
Internet of Things (IoT) Communication Protocols : Review
(
2017
),.
37.
S.
Raza
,
P.
Misra
,
Z.
He
, and
T.
Voigt
,
Building the Internet of Things with bluetooth smart
(
Ad Hoc Networks
57
,
2017
), pp.
19
31
.
38.
H.A.A.
Al-Kashoash
and
A.H.
Kemp
,
Comparison of 6LoWPAN and LPWAN for the Internet of Things
(
Aust. J. Electr. Electron. Eng.
13
,
2016
), pp.
268
274
.
39.
Z.
Huang
and
F.
Yuan
,
Implementation of 6LoWPAN and Its Application in Smart Lighting
(
J. Comput. Commun.
03
,
2015
), pp.
80
85
.
40.
G.K.
Ee
,
C.K.
Ng
,
N.K.
Noordin
, and
B.M.
Ali
,
A Review of 6LoWPAN Routing Protocols
(
Proc. Asia-Pacific Adv. Netw.
30
,
2010
), pp.
71
.
41.
A.
Kamilaris
,
Enabling Smart Homes Using Web Technologies
(
2012
), pp.
1
375
.
42.
Bluetooth.com,
Archived Specifications | Bluetooth Technology Website
(
Archived Specifications | Bluetooth Technology Website
(n.d., p. https://www.bluetooth.com/specifications/archived-specifications).
43.
N.A.T.
Lopez
,
J.R.B.
Pasaoa
,
J.A.
Parado
, and
J.O.
Morales
,
A Comparative Study of Thread Against ZigBee, Z- Wave, Bluetooth, and Wi-Fi as a Home-Automation Networking Protocol
. (
2016
),.
44.
Bluetooth Special Interes Group, Mesh Networking Specifications | Bluetooth Technology Website
(
Mesh Networking Specifications | Bluetooth Technology Website
(
2017
, p. https://www.bluetooth.com/specifications/mesh-specifications/%0Ahttps://www.bluetooth.com/specifications/mesh-specifications%0Ahttp://files/10/mesh-specifications.html).
45.
A.
Sivasankari
,
S.
Sudarvizhi
, and
L.
Sarala
,
A Comparative Study of Wireless Technologies Based on Home Automation Bluetooth Low Energy, Zigbee, Insteon and ENOCEAN
(
Int. J. Comput. Sci. Inf. Technol. Res.
2
,
2014
), pp.
255
259
.
46.
I.K. Georgios
Kambourakis
,
Constantinos Kolias, Dimitrios Geneiatakis, Georgios Karopoulos, Georgios Michail Makrakis
,
A State-of-the-Art Review on the Security of Mainstream IoT Wireless PAN Protocol Stacks (MDPI 2020)
, pp.
1
29
.
47.
V.S.
Gunge
and
P.S.
Yalagi
,
Smart Home Automation: A Literature Review
(
Int. J. Comput. Appl. Natl. Semin. Recent Trends Data Min.
2016
), pp.
975
8887
.
48.
D.D.
Piromalis
,
K.G.
Arvanitis
, and
N.
Sigrimis
,
DASH7 mode 2: A promising perspective for wireless agriculture
(
DASH7 Mode 2: A Promising Perspective for Wireless Agriculture
(IFAC, 2013, p. ).
49.
L.
Oliveira
,
J.J.P.C.
Rodrigues
,
S.A.
Kozlov
,
R.A.L.
Rabêlo
, and
V.H.C.
de Albuquerque
,
MAC layer protocols for internet of things: A survey
(
Futur. Internet
11, 2019
), pp.
1
42
.
50.
T.
Zachariah
,
N.
Klugman
,
B.
Campbell
,
J.
Adkins
,
N.
Jackson
, and
P.
Dutta
,
The Internet of Things Has a Gateway Problem
(
The Internet of Things Has a Gateway Problem
(
2015
, p. http://dl.acm.org/citation.cfm?doid=2699343.2699344).
51.
M.
Baert
,
J.
Rossey
,
A.
Shahid
, and
J.
Hoebeke
,
The bluetooth mesh standard: An overview and experimental evaluation
(
Sensors (Switzerland)
18
,
2018
),.
52.
M.
Collotta
and
G.
Pau
,
Bluetooth for Internet of Things: A fuzzy approach to improve power management in smart homes
(
Comput. Electr. Eng.
44
,
2015
), pp.
137
152
.
53.
EnOcean, Security of EnOcean Radio Networks V1.9
(
2013
), pp.
1
37
.
54.
S.
Marksteiner
,
V.J.E.
Jimenez
,
H.
Valiant
, and
H.
Zeiner
,
An overview of wireless IoT protocol security in the smart home domain
(
Jt. 13th CTTE 10th C. Conf. Internet Things - Bus. Model. Users, Networks
2018-Janua,
2017
), pp.
1
8
.
55.
M.K.
Rahmat
and
K.C.W.
Hor
,
Wireless technology in building automation system (AIP Conf. Proc.
2129
,
2019
),.
56.
S.
Sha
and
H.
Kaur
,
Simulation Study of Zigbee and Enocean Home Automation Standards
(
Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
03
,
2014
), pp.
11711
11719
.
57.
G.G.
Torres
,
R.V. Bayan
Henriques
,
C.E.
Pereira
, and
I.
Müller
,
An EnOcean Wearable Device with Fall Detection Algorithm Integrated with a Smart Home System
(
IFAC-PapersOnLine
51
,
2018
), pp.
9
14
.
58.
I.
Unwala
,
Z.
Taqvi
, and
J.
Lu
,
Thread: An IoT protocol
(
IEEE Green Technol. Conf.
2018
-April,
2018
), pp.
161
167
.
59.
D.
Lan
,
Z.
Pang
,
C.
Fischione
,
Y.
Liu
,
A.
Taherkordi
, and
F.
Eliassen
,
Latency Analysis of Wireless Networks for Proximity Services in Smart Home and Building Automation: The Case of Thread
(
IEEE Access
7
,
2019
), pp.
4856
4867
.
60.
Silicon Labs, UG103.11: Thread Fundamentals, Rev.0.7
(
2017
), pp.
1
25
.
61.
A.
Alm
,
Internet of Things mesh network Using the Thread networking protocol
(
2019
),.
62.
R.
Sandre
,
Thread and Zigbee for home and building automation
(
2018
),.
63.
H.S.
Kim
,
S.
Kumar
, and
D.E.
Culler
,
Thread/openthread: A compromise in low-power wireless multihop network architecture for the internet of things
(
IEEE Commun. Mag.
57
,
2019
), pp.
55
61
.
64.
I.
Unwala
,
R_1_2017_IoT Security- ZWave and Thread
(
2017
), pp.
355
359
.
65.
D. Lan
Kth
,
Experimental Study of Thread Mesh Network for Wireless Building Automation Systems
(
2016
),.
66.
M.S.
Mahmoud
and
A.A.H.
Mohamad
,
A Study of Efficient Power Consumption Wireless Communication Techniques/ Modules for Internet of Things (IoT) Applications (Adv
.
Internet Things
06
,
2016
), pp.
19
29
.
67.
W.
Ayoub
,
A.E.
Samhat
,
F.
Nouvel
,
M.
Mroue
, and
J. christophe
Prevotet
,
Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and Supported Mobility
(
IEEE Commun. Surv. Tutorials
2018
),.
68.
M.
Kashyap
,
V.
Sharma
, and
N.
Gupta
,
Taking MQTT and NodeMcu to IOT: Communication in Internet of Things
(
Procedia Comput. Sci.
132
,
2018
), pp.
1611
1618
.
69.
C.
Paetz
, Z-Wave Basics:Remote Control in Smart Homes (Z-Wave Basics:Remote Control in Smart Homes (
CreateSpace Independent Publishing Platform
,
USA
,
2013
).
70.
J.D.
Fuller
,
B.W.
Ramsey
,
M.J.
Rice
, and
J.M.
Pecarina
,
Misuse-based detection of Z-Wave network attacks
(
Comput. Secur.
64, 2017
), pp.
44
58
.
71.
Open-ZWave, OZW Utilities (OZW Utilities
(
2020
, p. http://www.openzwave.com/).
72.
C.W.
Badenhop
,
S.R.
Graham
,
B.W.
Ramsey
,
B.E.
Mullins
, and
L.O.
Mailloux
,
The Z-Wave routing protocol and its security implications
(
Comput. Secur.
68
,
2017
), pp.
112
129
.
73.
B.
Fouladi
and
S.
Ghanoun
,
Security Evaluation of the Z-Wave Wireless Protocol
(
Black Hat
2013
), pp.
6
.
74.
C.
Paetz
,
Z-wave basics : remote control in smart homes
(
2015
), pp.
300
.
75.
C.
Del-Valle-Soto
,
L.J.
Valdivia
,
R.
Velázquez
,
L.
Rizo-Dominguez
, and
J.C.
López-Pimentel
,
Smart campus: An experimental performance comparison of collaborative and cooperative schemes for wireless sensor network
(
Energies
12
,
2019
),.
76.
A.
Rai
,
A Review on Wireless Home Automation Systems based on Zigbee Technology
(
2017
), pp.
40
45
.
77.
I.
Froiz-Míguez
,
T.M.
Fernández-Caramés
,
P.
Fraga-Lamas
, and
L.
Castedo
,
Design, implementation and practical evaluation of an iot home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes
(
Sensors (Switzerland)
18
,
2018
), pp.
1
42
.
78.
Y.
Xiao
,
T.
Sun
,
L.-P.
Tung
,
L.-J.
Chen
,
N.-C.
Liang
,
F.H.
Li
, and
H.
Chen
,
The Impact of Node Heterogeneity on ZigBee Network Routing
(in
Handb. Sens. Networks WORLD SCIENTIFIC
,
2010
, pp.
167
180
.
79.
V.
Orfanos
,
S.D.
Kaminaris
,
D.
Piromalis
, and
P.
Papageorgas
,
Trends in home automation systems and protocols
(
AIP Conf. Proc.
2190
,
2019
),.
80.
C.W.
Lin
and
H.
Yu
,
Invited - Cooperation or competition?: Coexistence of safety and security in next- generation ethernet-based automotive networks
(
Proc. - Des. Autom. Conf.
05-09-June,
2016
),.
This content is only available via PDF.
You do not currently have access to this content.