Food fraud continues to be a global issue. In recent years, fraudulent rice draws attention to the public agency where rice substituted with look-alike substance, low-quality rice, or impure substances due to profit motive. However, the techniques used to determine fraudulent rice, such as DNA profiling and physicochemical properties, are laborious, inconvenient, and time-consuming. The Near-Infrared Spectroscopy (NIRS) increased acceptance in fraud detection in recent years due to its good feasibility, accuracy and non-destructive. This study utilizes NIRS, Principal Component Analysis (PCA), and Logistic Regression (LR) to explore the correlated variable and to determine the linear relationship between the spectral of adulteration of rice sample. A total of 123 near infrared (NIR) spectral data collected from 31 unadulterated rice samples and ten adulterated rice samples in 3 different lightning condition places. Based on the processed data in PCA, the LR model achieved good accuracy of 94.4% on training and 99.4% on the independent test set. This study indicated that the combination of NIRS, PCA, and LR is feasible and effective in fraud detection in rice.

1.
FAO
, n.d. Dimensions of need - staple foods: what do people eat? [Online] Fao.org. Available from: http://www.fao.org/3/u8480e/U8480E07.htm [Accessed 8 Dec
2019
].
2.
FAO
,
2004
.
International year of rice 2004: Rice and us
. [Online] Fao.org. Available at: http://www.fao.org/rice2004/en/rice-us.htm [Accessed 8 Dec 2019].
3.
Chaudhari
,
P.
,
Tamrakar
,
N.
,
Singh
,
L.
,
Tandon
,
A.
and
Sharma
,
D.
,
Journal of Pharmacognosy And Phytochemistry
,
7
(
2
),
150
(
2018
).
4.
Rohman
,
A.
,
Helmiyati
,
S.
,
Hapsari
,
M.
and
Setyaningrum
,
D.
,
International Food Research Journal
,
21
(
1
),
13
(
2014
).
5.
Bernas, n.d. Rice type in Malaysia. [Online] BERNAS. Available from: http://www.bernas.com.my/bernas/index.php/ricepedia/rice-type-in-malaysia [Accessed 16 Nov
2019
].
6.
Babu
,
P.
,
Subhasree
,
R.
and
Rajagopal
,
V.
,
American-Eurasian Journal of Agronomy
,
2
(
1
) (
2009
).
7.
Syam’un
,
E.
,
Musa
,
Y.
,
Sadimantara
,
G.R.
,
Leomo
,
S.
and
Rakian
,
T.C.
, February. “
The effect of shade on chlorophyll and anthocyanin content of upland red rice
” in
IOP Conference Series: Earth and Environmental Science
(Vol.
122
, No.
12018
), pp.
012030
.
8.
Hanis
,
A.
,
Jinap
,
S.
,
Mad
Nasir
, S.,
Radam
,
A.
and
Muhammad
Shahrim
, A.,
International Food Research Journal
,
19
(
1
),
363
369
(
2012
).
9.
BBC
,
2016
. ‘Plastic Rice’ Seized in Nigeria. [Online] BBC News. Available from: https://www.Bbc.Com/News/World-Africa-38391998 [Accessed 10 Nov 2019].
10.
India Today
,
2017
.
No plastic but Delhi food department finds adulteration in basmati rice
. [Online] India Today. Available from: https://www.indiatoday.In/Mail-Today/Story/Viral-Video-Rice-Made-Of-Plastic-Delhi-Food-Department-Basmati-981782-2017-06-09 [Accessed 10 Nov 2019].
11.
CNA
,
2018
.
Deadly pesticide found in rice that killed 15 in india
. [Online] CNA. Available from: https://www.channelnewsasia.com/News/Asia/Deadly-Pesticide-Toxic-Rice-India-Temple-Killed-15-11043908 [Accessed 10 Nov 2019].
12.
Borneo Post Online
,
2018
.
’Fake’ rice discovered in Sibu
. [Online] Borneo Post Online. Available from: https://www.theborneopost.Com/2018/11/09/Fake-Rice-Discovered-In-Sibu/ [Accessed 10 Nov 2019].
13.
Siddiq
,
E.
,
Nerkar
,
Y.
and
Mehta
,
S.
,
Theoretical and Applied Genetics
,
42
(
8
),
351
356
(
1972
).
14.
Thind
,
G.
and
Sogi
,
D.
,
Food Chemistry
,
91
(
2
),
227
233
(
2005
).
15.
Attaviroj
,
N.
and
Noomhorm
,
A.
,
International Journal of Food Properties
,
17
(
5
),
1136
1149
(
2014
).
16.
Kambo
,
R.
and
Yerpude
,
A.
,
International Journal of Computer Trends and Technology
,
11
(
2
),
80
85
(
2014
).
17.
Osborne
,
B.
,
Mertens
,
B.
,
Thompson
,
M.
and
Fearn
,
T.
,
Journal of Near Infrared Spectroscopy
,
1
(
2
),
77
83
. (
1993
).
18.
Fu
,
X.
and
Ying
,
Y.
,
Critical Reviews in Food Science and Nutrition
,
56
(
11
),
1913
1924
(
2016
).
19.
Zhu
,
M.
,
Wen
,
B.
,
Wu
,
H.
,
Li
,
J.
,
Lin
,
H.
,
Li
,
Q.
,
Li
,
Y.
,
Huang
,
J.
and
Liu
,
Z.
,
Journal of Spectroscopy
,
1
11
(
2019
).
20.
Fitzgerald
,
M.
,
Martin
,
M.
,
Ward
,
R.
,
Park
,
W.
and
Shead
,
H.
,
Journal of Agricultural and Food Chemistry
,
51
(
8
),
2295
2299
(
2003
).
21.
Vaclavik
,
V.
and
Christian
,
E.
,
Essentials of Food Science. 3rd ed. New York
,
NY
:
Springer New York
,
53
54
, (
2007
).
22.
Mohamed
,
M. Y.
,
Solihin
,
M. I.
,
Astuti
,
W.
,
Ang
,
C. K.
, &
Zailah
,
W.
,
Journal of Physics: Conference Series
(
1367
,
2019
) pp.
012029
.
23.
Solihin
,
M. I.
,
Shameem
,
Y.
,
Htut
,
T.
,
Ang
,
C. K.
, &
Muzaiyanahbt
Hidayab
,
International Journal of Recent Technology and Engineering (IJRTE)
, (
3
),
16
19
(
2019
).
24.
Abdullah
Al-Sanabani
, D.,
Solihin
,
M.
,
Pui
,
L.
,
Astuti
,
W.
,
Ang
,
C.
and
Hong
,
L.
,
Journal of Physics: Conference Series
, (
1
,
2019
) pp.
1
7
.
25.
Lavine
,
B.
and
Mirjankar
,
N.
,
Encyclopedia of Analytical Chemistry
(
2012
).
26.
Amuah
,
C.L.
,
Teye
,
E.
,
Lamptey
,
F.P.
,
Nyandey
,
K.
,
Opoku-Ansah
,
J.
and
Adueming
,
P.O.W.
,
Journal of Spectroscopy
,
1
9
. (
2019
).
27.
Xu
,
L.
,
Zhou
,
Y.
,
Tang
,
L.
,
Wu
,
H.
,
Jiang
,
J.
,
Shen
,
G.
and
Yu
,
R.
,
Analytica Chimica Acta
,
616
(
2
),
138
143
. (
2008
).
28.
M. I.
Solihin
,
E.
Natarajan
,
C. K.
Ang
, and M. K.,
A.
Khan
, “
Observation on Multivariable Regression Methods for Various Near Infrared Spectra Data
,”
2018 IEEE 4th International Symposium in Robotics and Manufacturing Automation (ROMA)
(
IEEE
,
2020
), pp.
1
5
.
29.
Gholizadeh
,
A.
,
Borůvka
,
L.
,
Saberioon
,
M.M.
,
Kozák
,
J.
,
Vašát
,
R.
and
Němeček
,
K.
,
Soil and Water Research
,
10
(
4
),
218
227
(
2015
).
30.
Rinnan
,
Berg
, F. and
Engelsen
,
S.
,
TrAC Trends in Analytical Chemistry
,
28
(
10
),
1201
1222
(
2009
).
31.
Jolliffe
,
I.
and
Cadima
,
J.
,
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
,
374
(
2065
),
1
15
(
2016
).
32.
Toscano
,
G.
,
Rinnan
,
Å.
,
Pizzi
,
A.
and
Mancini
,
M
,
Energy & Fuels
,
31
(
3
),
2814
2821
(
2017
).
33.
Mehdizadeh
,
S.A.
,
Minaei
,
S.
,
Hancock
,
N.H.
and
Torshizi
,
M.A.K.
,
Information Processing in Agriculture
,
1
(
2
),
105
114
(
2014
).
34.
Dieing
,
T.
and
Ibach
,
W.
,
In Confocal Raman Microscopy
,
61
89
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.