Within the framework of linear micropolar theory of elasticity, mathematical model of multilayered cylinder shell is considered. To analyze multilayered structure of the shell, the layer-wise approach is applied. For each layer, the approximations of displacements and rotations together with the averaging procedure in the thickness direction are applied. The governing equations of the theory are written in a thermodynamically consistent form of the energy conservation laws. For numerical modeling of wave propagation in micropolar shells, the algorithm based on the splitting method in combination with monotone ENO-scheme and Crank-Nicolson scheme is proposed. The computation results of dynamic problems on the action of instant concentrated external load are shown for media with various types of microstructure particles.

1.
B. E.
Abali
(
2009
)
Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation
,
Continuum Mech. Thermodyn.
31
,
885
894
.
2.
D.
Del Vescovo
and
I.
Giorgio
(
2014
)
Dynamic problems for metamaterials: review of existing models and ideas for further research
,
Int. J. Eng. Sci.
80
,
153
172
.
3.
H.
Altenbach
and
V.
Eremeyev
, “Mechanics of viscoelastic plates made of FGMs,” in
Computational Modelling and Advanced Simulations, Computational Methods in Applied Sciences
24
(
Springer Netherlands
,
2011
), pp.
33
48
.
4.
E.
Cosserat
and
F.
Cosserat
,
Theorie des Corps Deformables
(
Herman et Fils
,
Paris
,
1909
).
5.
S.
Hassanpour
and
G. R.
Heppler
(
2015
)
Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations
,
Math. Mech. Solids
22
(
2
),
224
242
.
6.
J. L.
Ericksen
and
C.
Truesdell
(
1958
)
Exact theory of stress and strain in rods and shells
,
Arch. Ration. Mech. Anal.
1
(
1
)
295
323
.
7.
V.
Eremeyev
and
H.
Altenbach
, “Basics of mechanics of micropolar shells,” in
Altenbach
H.
,
Eremeyev
V.
(eds)
Shell-like Structures
,
CISM International Centre for Mechanical Sciences (Courses and Lectures), v572 (Springer
,
Cham
,
2017
), pp.
3
111
.
8.
J.
Altenbach
,
H.
Altenbach
, and
V. A.
Eremeyev
(
2010
)
On generalized Cosserat-type theories of plates and shells: a short review and bibliography
,
Archive of Applied Mechanics
80
(
1
),
73
92
.
9.
M.
Nikabadze
and
A.
Ulukhanyan
(
2020
)
Modeling of multilayer thin bodies
,
Continuum Mech. Thermodyn. (Springer)
32
,
817
842
.
10.
J. N.
Reddy
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
(
CRC Press
,
Boca Raton, London, New York, Washington, D.C
.,
1945
).
11.
K. M.
Liew
,
Z. Z.
Pan
, and
L. W.
Zhang
(
2019
)
An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application
,
Compos. Struct.
216
,
240
259
.
12.
D.
Li
(
2020
)
Layerwise theories of laminated composite structures and their applications: A review
,
Arch. Comput. Method E
, DOI:.
13.
E.
Carrera
(
2003
)
Historical review of Zig-Zag theories for multilayered plates and shells
,
Appl. Mech. Rev.
56
(
3
),
287
308
.
14.
A. E.
Green
and
P. M.
Naghdi
(
1967
)
Linear theory of an elastic Cosserat plate
,
Camb. Phil. Soc. Math. Phys. Sci.
63
(
2
),
537
550
.
15.
A. C.
Eringen
(
1967
)
Theory of micropolar plates
,
ZAMP
18
(
1
),
12
30
.
16.
M.
Varygina
, “Numerical modeling of micropolar cylindrical shells on supercomputers with GPUs,” in AMi-TaNS’17,
AIP CP
1895
, edited by
M.
Todorov
(
American Institute of Physics
,
Melville, NY
,
2017
), paper 080005.
17.
M.
Varygina
(
2020
) Numerical modeling of elastic waves in micropolar plates and shells taking into account inertial characteristics,
Continuum Mech. Thermodyn
. (
Springer
)
32
,
761
774
.
18.
V. A.
Palmov
(
1964
)
Basic equations of the theory of asymmetric elasticity
,
Appl. Math. Mech.
28
(
3
),
401
408
. [in Russian]
19.
S. O.
Sargsyan
(
2012
)
The theory of micropolar thin elastic shells
,
J. Appl. Math. Mech. (Elsevier)
76
(
2
),
235
249
.
20.
H.
Altenbach
and
V. A.
Eremeyev
(
2015
)
On the constitutive equations of viscoelastic micropolar plates and shells of differential type
,
Math. Mech. Complex Syst.
3
(
3
),
273
283
.
21.
L.
Steinberg
and
R.
Kvasov
(
2013
)
Enhanced mathematical model for Cosserat plate bending
,
Thin-Walled Struct.
63
,
51
62
.
22.
K. O.
Friedrichs
(
1954
)
Symmetric hyperbolic linear differential equations
,
Commun. Pure Appl. Math.
7
(
2
),
345
392
.
23.
N. N.
Yanenko
,
The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables
(
Springer
,
Berlin, Heidelberg
,
1971
).
24.
G. I.
Marchuk
,
Methods of Numerical Mathematics
(
Springer
,
Berlin
,
1975
).
25.
A. G.
Kulikovskii
,
N. V.
Pogorelov
, and
A. Yu.
Semenov
,
Mathematical Aspects of Numerical Solution of Hyperbolic Systems
,”
Monographs and Surveys in Pure and Applied Mathematics, Vol
.
118
(
Chapman & Hall
,
Boca Raton
,
2001
).
26.
R.
Lakes
(
1995
)
Experimental methods for study of Cosserat elastic solids and other generalized elastic continua
,
Continuum Models for Materials with Micro-Stucture
, Ch. 1, pp.
1
22
.
27.
R. D.
Gauthier
and
W. E.
Jahsman
(
1981
)
A quest for micropolar elastic constants
,
Arch. Mech.
33
(
5
),
717
737
.
This content is only available via PDF.
You do not currently have access to this content.