In this work we study some characteristics of sigmoidal growth functions that are solutions to dynamical systems induced by reaction networks. The studied dynamical systems are close to the Gompertzian and logistic type growth models. Apart from the growing species, the considered reaction networks involve additional decaying species interpreted as environmental resource(s). Using reaction network theory approach, we formulate several modifications/generalizations of the classic logistic Verhulst model, borrowing ideas from the reaction network formulation of the Gompertz model. Our study of the monotonicity order-preservation properties of the model solutions is supported by numerical computations and graphical visualizations. We also attempt a classification of the reaction networks inducing growth-decay models based on the types of the elementary reactions incorporated in these networks.

1.
R.
Anguelov
,
M.
Borisov
,
A.
Iliev
,
N.
Kyurkchiev
, and
S.
Markov
(
2018
)
On the chemical meaning of some growth models possessing Gompertzian-type property
,
Mathematical Methods in the Applied Sciences
41
,
8365
8376
, https://onlinelibrary.wiley.com/doi/ pdf/10.1002/mma.4539.
2.
S.
Markov
(
2019
)
Reaction networks reveal new links between Gompertz and Verhulst growth functions
,
BIOMATH
8
,
1904167
.
3.
M.
Borisov
and
S.
Markov
(
2020
)
The two-step exponential decay reaction network: Analysis of the solutions and relation to epidemiological SIR models with logistic and Gompertz type infection contact patterns, submitted to
Journal of Mathematical Chemistry
(
2020
).
4.
G.
Lente
,
Deterministic Kinetics in Chemistry and Systems Biology: The Dynamics of Complex Reaction Networks, Springer Briefs in Molecular Science
(
Springer International Publishing
,
2015
).
5.
P.-F.
Verhulst
(
1838
)
Notice sur la loi que la population poursuit dans son accroissement
,
Correspondance mathmatique et physique
10
,
113
121
.
6.
B.
Gompertz
(
1825
)
On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies
,
Philosophical Transactions of the Royal Society of London
115
,
513
583
.
7.
F. J.
Richards
(
1959
)
A flexible growth function for empirical use
,
Journal of Experimental Botany
10
,
290
300
.
8.
V.
Chellaboina
,
S. P.
Bhat
,
W. M.
Haddad
, and
D. S.
Bernstein
(
2009
)
Modeling and analysis of mass-action kinetics
,
IEEE Control Systems Magazine
29
,
60
78
.
9.
J. D.
Murray
,
Mathematical Biology: I. An Introduction, Interdisciplinary Applied Mathematics
(
Springer
New York
,
2002
).
10.
H.
Bateman
(
1910
)
The solution of a system of differential equations occurring in the theory of radio-active transformations
,
Proc. Cambridge Phil. Soc.
15
,
423
427
.
11.
S.
Markov
(
2019
)
On a class of generalized Gompertz-Bateman growth-decay models
,
Biomath Communications
6
,
51
64
.
12.
A.
Garfinkel
,
J.
Shevtsov
, and
Y.
Guo
,
Modeling Life: The Mathematics of Biological Systems
(
Springer
,
2017
).
13.
A.
Goriely
,
The Mathematics and Mechanics of Biological Growth
(
Springer-Verlag New York
,
2017
).
14.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K.
Jarrod Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C.
Carey
,
I.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
Van der Plas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
 et al (
2020
)
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,
Nature Methods
17
,
261
272
.
15.
S.
van derWalt
,
S. C.
Colbert
, and
G.
Varoquaux
(
2011
)
The NumPy array: A structure for efficient numerical computation
,
Computing in Science Engineering
13
,
22
30
.
16.
J. D.
Hunter
(
2007
)
Matplotlib: A 2D graphics environment
,
Computing in Science Engineering
9
,
90
95
.
17.
K. M. C.
Tjorve
and
E.
Tjorve
(
2017
)
The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family
,
PLOS ONE
12
,
1
17
.
This content is only available via PDF.
You do not currently have access to this content.