This paper presents an exact solution to the nonhomogeneous boundary value problem of the theory of elasticity for a clamped rectangle. First, a solution to the nonhomogeneous problem for an infinite strip with clamped sides is constructed. Then, a solution for the rectangle is added to this solution, with the help of which the boundary conditions at the ends are satisfied. To solve the nonhomogeneous problem in the clamped strip, Papkovich's generalized orthogonality relation is used. The solution in the rectangle is represented in the form of series in Papkovich–Fadle eigenfunctions, the coefficients of which are determined by simple formulas. The final formulas are simple and can easily be used in engineering.

1.
M. D.
Kovalenko
,
I. V.
Menshova
, and
A. P.
Kerzhaev
, in
Proc. of 2017 8th International Conf. on Mechanical and Aerospace Engineering (ICMAE 2017), Prague, 2017
(
IEEE
,
2017
), pp.
179
183
.
2.
M. D.
Kovalenko
,
I. V.
Menshova
,
A. P.
Kerzhaev
, and
G.
Yu
, “
Eigenfunction expansion for the elastic rectangle
,” in
Proc. of 2020 10th International Conf. on Applied Physics and Mathematics (ICAPM 2020), Tokyo, 2020
. [to appear]
3.
Ya. S.
Uflyand
,
Integral Transforms in Problems of the Theory of Elasticity
(
Nauka
,
Leningrad
,
1967
). [in Russian]
4.
P. F.
Papkovich
(
1940
)
Dokl. Akad. Nauk SSSR
27
,
335
339
. [in Russian]
5.
G. A.
Grinberg
(
1953
)
Prikl. Mat. Mekh.
17
,
211
228
. [in Russian]
6.
R. D.
Gregory
(
1983
)
J. Elast.
13
,
351
355
.
7.
B. M.
Nuller
(
1969
)
J. Appl. Math. Mech.
33
(
2
),
364
372
.
8.
B.
Patra
(
1981
)
J. Indian Inst. Sci.
63
(
B
),
25
33
.
9.
B. G.
Prakash
(
1978
)
Mech. Res. Comm.
5
(
5
),
251
255
.
10.
M. D.
Kovalenko
and
T. D.
Shulyakovskaya
(
2011
)
Mech. Solids
46
(
5
),
721
738
.
11.
J. A.
Steketee
(
1958
)
Can. J. Phys.
36
(
2
),
192
205
.
12.
K.
Kasahara
,
Earthquake Mechanics
(
Cambridge University Press
,
Cambridge
,
1981
).
13.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity. Course of Theoretical Physics
, Vol.
7
(
Butterworth-Heinemann
,
Oxford
,
1986
).
14.
L. I.
Slepyan
,
Mechanics of Cracks
(
Sudostroenie
,
Leningrad
,
1990
). [in Russian]
15.
G.
Yu
,
M. D.
Kovalenko
,
I. V.
Menshova
, and
A. P.
Kerzhaev
(
2019
)
J. Phys.: Conf. Ser.
1215
,
012037
.
16.
M. D.
Kovalenko
,
I. V.
Menshova
, and
T. D.
Shulyakovskaya
(
2013
)
Mech. Solids
48
(
5
),
584
602
.
This content is only available via PDF.
You do not currently have access to this content.