We review the symmetry properties of differential equations involving the Schwarzian derivative. We propose and study new differential equations and systems determined by their Lie point symmetry groups, which generalize the Kummer-Schwarz equation and the Schwarzian Korteweg-de Vries equation.

1.
V.
Ovsienko
and
S.
Tabachnikov
(
2009
)
Notices of the AMS
56
,
34
36
.
2.
Y. D.
Bozhkov
and
P. R.
da Conceicao
(
2020
)
Nonlinear Analysis
192
, p.
111691
.
3.
G. W.
Bluman
and
S.
Anco
,
Symmetry and Integration Methods for Differential Equations
(
Springer
,
New York
,
2002
).
4.
G. W.
Bluman
and
S.
Kumei
,
Symmetries and Differential Equations
(
Springer
,
New York
,
1989
).
5.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
(
Springer
,
New York
,
2010
).
6.
N. H.
Ibragimov
,
Transformation Groups Applied to Mathematical Physics
(
D. Reidel Publishing Co
.,
Dor-drecht
,
1985
).
7.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
(
Springer
,
New York
,
1986
).
8.
L. V.
Ovsyannikov
,
Group Analysis of Differential Equations
(
Academic Press
,
New York
,
1982
).
9.
H.
Stephani
,
Differential Equations: Their Solutions Using Symmetries
(
Cambridge Univ. Press
,
Cambridge
,
1989
).
10.
P. G. L.
Leach
(
2008
)
J. Math. Anal. Appl.
348
,
487
493
.
11.
N. H.
Ibragimov
,
CRC Handbook of Lie Group Analysis of Differential Equations
, Vol.
3
, Chapter 8 (
CRC Press
,
Boca Raton, FL
,
1996
).
12.
B. A.
Dubrovin
,
A. T.
Fomenko
, and
S. P.
Novikov
,
Modern Geometry – Methods and Applications. Part I: The Geometry of Surfaces, Transformation Groups, and Fields
(
Springer
,
New York
,
1992
).
13.
P. G. L.
Leach
and
K. S.
Govinder
(
1999
)
J. Math. Anal. Appl.
235
,
84
107
.
14.
I. M.
Krichever
and
S. P.
Novikov
(
1979
)
Sov. Math. Dokl.
20
,
650
654
.
15.
Y. D.
Bozhkov
(
2015
)
J. Math. Anal. Appl.
426
,
89
104
.
This content is only available via PDF.
You do not currently have access to this content.