We review the symmetry properties of differential equations involving the Schwarzian derivative. We propose and study new differential equations and systems determined by their Lie point symmetry groups, which generalize the Kummer-Schwarz equation and the Schwarzian Korteweg-de Vries equation.
REFERENCES
1.
2.
Y. D.
Bozhkov
and P. R.
da Conceicao
(2020
) Nonlinear Analysis
192
, p. 111691
.3.
G. W.
Bluman
and S.
Anco
, Symmetry and Integration Methods for Differential Equations
(Springer
, New York
, 2002
).4.
G. W.
Bluman
and S.
Kumei
, Symmetries and Differential Equations
(Springer
, New York
, 1989
).5.
G. W.
Bluman
, A. F.
Cheviakov
, and S.
Anco
, Applications of Symmetry Methods to Partial Differential Equations
(Springer
, New York
, 2010
).6.
N. H.
Ibragimov
, Transformation Groups Applied to Mathematical Physics
(D. Reidel Publishing Co
., Dor-drecht
, 1985
).7.
P. J.
Olver
, Applications of Lie Groups to Differential Equations
(Springer
, New York
, 1986
).8.
L. V.
Ovsyannikov
, Group Analysis of Differential Equations
(Academic Press
, New York
, 1982
).9.
H.
Stephani
, Differential Equations: Their Solutions Using Symmetries
(Cambridge Univ. Press
, Cambridge
, 1989
).10.
P. G. L.
Leach
(2008
) J. Math. Anal. Appl.
348
, 487
–493
.11.
N. H.
Ibragimov
, CRC Handbook of Lie Group Analysis of Differential Equations
, Vol. 3
, Chapter 8 (CRC Press
, Boca Raton, FL
, 1996
).12.
B. A.
Dubrovin
, A. T.
Fomenko
, and S. P.
Novikov
, Modern Geometry – Methods and Applications. Part I: The Geometry of Surfaces, Transformation Groups, and Fields
(Springer
, New York
, 1992
).13.
P. G. L.
Leach
and K. S.
Govinder
(1999
) J. Math. Anal. Appl.
235
, 84
–107
.14.
15.
Y. D.
Bozhkov
(2015
) J. Math. Anal. Appl.
426
, 89
–104
.
This content is only available via PDF.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.