We report on the acousto-optic interaction that is induced by flexural acoustic vortices of linear polarization in circular optical fibers. A new way of stable efficient optical vortex generation from a regular beam is shown. A counterintuitive connection between topological charge of the generated optical vortex and exited in the fiber acoustic one is unveiled and explained. The corresponding transfer of orbital angular momentum is underlined.

1.
A.
Yao
and
M.
Padgett
, “
Orbital angular momentum: origins, behavior and applications
,”
Adv. Opt. Photon.
3
,
161
204
(
2011
).
2.
M.
Soskin
and
M.
Vasnetsov
, “Chapter 4 - singular optics,” in
Progress in Optics, Progress in Optics
, vol.
42
, edited by
E.
Wolf
(
Elsevier
,
2001
) pp.
219
276
.
3.
Y.
Yan
,
G.
Xie
,
M. P. J.
Lavery
,
H.
Huang
,
N.
Ahmed
,
C.
Bao
,
Y.
Ren
,
Y.
Cao
,
L.
Li
,
Z.
Zhao
,
A. F.
Molisch
,
M.
Tur
,
M. J.
Padgett
, and
A. E.
Willner
, “
High-capacity millimetre-wave communications with orbital angular momentum multiplexing
,”
Nature Communications
5
,
4876EP
– (
2014
).
4.
N.
Bozinovic
,
Y.
Yue
,
Y.
Ren
,
M.
Tur
,
P.
Kristensen
,
H.
Huang
,
A. E.
Willner
, and
S.
Ramachandran
, “
Terabit-scale orbital angular momentum mode division multiplexing in fibers
,”
Science
340
,
1545
(
2013
).
5.
E. V.
Barshak
,
C. N.
Alexeyev
,
B. P.
Lapin
, and
M. A.
Yavorsky
, “
Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission
,”
Phys. Rev. A
91
,
033833
(
2015
).
6.
M. A.
Yavorsky
, “
All-fiber polarization-dependent optical vortex beams generation via flexural acoustic wave
,”
Opt. Lett.
38
,
3151
3153
(
2013
).
7.
W.
Zhang
,
L.
Huang
,
K.
Wei
,
P.
Li
,
B.
Jiang
,
D.
Mao
,
F.
Gao
,
T.
Mei
,
G.
Zhang
, and
J.
Zhao
, “
High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion
,”
Opt. Lett.
41
,
5082
5085
(
2016
).
8.
M. A.
Yavorsky
,
D. V.
Vikulin
,
E. V.
Barshak
,
B. P.
Lapin
, and
C. N.
Alexeyev
, “
Revised model of acousto-optic interaction in optical fibers endowed with a flexural wave
,”
Opt. Lett.
44
,
598
601
(
2019
).
9.
C. N.
Alexeyev
,
E. V.
Barshak
,
A. V.
Volyar
, and
M. A.
Yavorsky
, “
Perturbation theory approach for the wave equation in fibre acousto-optics
,”
J. Opt
12
,
115708
(
2010
).
10.
A. W.
Snyder
and
J. D.
Love
,
Optical waveguide theory
(
Chapman and Hall
,
London
,
1985
).
This content is only available via PDF.
You do not currently have access to this content.