High-refractive index nanoparticles can support strong optical Mie resonances, whose spectral positions depend on the particle size. One of these materials is lead halide perovskite, which is a family of materials prospective for light emission. In this work, we demonstrate that a resonant perovskite cubic nanoparticle can be used to control the light emission via the Purcell effect. We present a theoretical study of the dependence of the radiation properties on size and the position of emission source in the particle. The calculations reveal an average Purcell factor enhancement for resonance nanoparticles up to 8, leading to the optimization of the emission quantum efficiency. This is important for the creation of highly efficient perovskite light-emitting devices.

1.
A.
Krasnok
,
S.
Makarov
,
M.
Petrov
,
R.
Savelev
,
P.
Belov
, and
Y.
Kivshar
, “
Towards all-dielectric metamaterials and nanophotonics
,” in
Metamaterials X
, vol.
9502
(International Society for Optics and Photonics,
2015
) p. 950203.
2.
A.
Devilez
,
B.
Stout
, and
N.
Bonod
, “
Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission
,”
ACS nano
4
,
3390
3396
(
2010
).
3.
G. M.
Akselrod
,
C.
Argyropoulos
,
T. B.
Hoang
,
C.
Ciracì
,
C.
Fang
,
J.
Huang
,
D. R.
Smith
, and
M. H.
Mikkelsen
, “
Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas
,”
Nature Photonics
8
,
835
(
2014
).
4.
D.
Bouchet
,
M.
Mivelle
,
J.
Proust
,
B.
Gallas
,
I.
Ozerov
,
M. F.
Garcia-Parajo
,
A.
Gulinatti
,
I.
Rech
,
Y.
De Wilde
,
N.
Bonod
, et al, “
Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas
,”
Physical Review Applied
6
,
064016
(
2016
).
5.
A.
Krasnok
,
S.
Glybovski
,
M.
Petrov
,
S.
Makarov
,
R.
Savelev
,
P.
Belov
,
C.
Simovski
, and
Y.
Kivshar
, “
Demonstration of the enhanced purcell factor in all-dielectric structures
,”
Applied Physics Letters
108
,
211105
(
2016
).
6.
S.
Noda
,
M.
Fujita
, and
T.
Asano
, “
Spontaneous-emission control by photonic crystals and nanocavities
,”
Nature photonics
1
,
449
(
2007
).
7.
J. D.
Thompson
,
T.
Tiecke
,
N. P.
de Leon
,
J.
Feist
,
A.
Akimov
,
M.
Gullans
,
A. S.
Zibrov
,
V.
Vuletić
, and
M. D.
Lukin
, “
Coupling a single trapped atom to a nanoscale optical cavity
,”
Science
340
,
1202
1205
(
2013
).
8.
A. S.
Zalogina
,
R.
Savelev
,
E. V.
Ushakova
,
G.
Zograf
,
F.
Komissarenko
,
V.
Milichko
,
S.
Makarov
,
D.
Zuev
, and
I.
Shadrivov
, “
Purcell effect in active diamond nanoantennas
,”
Nanoscale
10
,
8721
8727
(
2018
).
9.
E.
Tiguntseva
,
G.
Zograf
,
F.
Komissarenko
,
D.
Zuev
,
A.
Zakhidov
,
S.
Makarov
, and
Y. S.
Kivshar
, “
Light-emitting halide perovskite nanoantennas
,”
Nano Letters
18
,
1185
1190
(
2018
).
10.
B. R.
Sutherland
and
E. H.
Sargent
, “
Perovskite photonic sources
,”
Nature Photonics
10
,
295
(
2016
).
11.
E. Y.
Tiguntseva
,
D. G.
Baranov
,
A. P.
Pushkarev
,
B.
Munkhbat
,
F.
Komissarenko
,
M.
Franckevicius
,
A. A.
Zakhidov
,
T.
Shegai
,
Y. S.
Kivshar
, and
S. V.
Makarov
, “
Tunable hybrid fano resonances in halide perovskite nanoparticles
,”
Nano letters
18
,
5522
5529
(
2018
).
12.
E. Y.
Tiguntseva
,
K. L.
Koshelev
,
A. D.
Furasova
,
V. Y.
Mikhailovskii
,
E. V.
Ushakova
,
D. G.
Baranov
,
T. O.
Shegai
,
A. A.
Zakhidov
,
Y. S.
Kivshar
, and
S. V.
Makarov
, “
Single-particle mie-resonant all-dielectric nanolasers
,”
arXiv preprint arXiv:1905.08646
(
2019
).
13.
J.-J.
Greffet
,
M.
Laroche
, and
F.
Marquier
, “
Impedance of a nanoantenna and a single quantum emitter
,”
Physical Review Letters
105
,
117701
(
2010
).
14.
H.
Chew
, “
Radiation and lifetimes of atoms inside dielectric particles
,”
Physical Review A
38
,
3410
(
1988
).
15.
P.
Tonkaev
,
G.
Zograf
, and
S.
Makarov
, “
Optical cooling of lead halide perovskite nanoparticles enhanced by mie resonances
,”
Nanoscale
11
,
17800
17806
(
2019
).
16.
A. S.
Berestennikov
,
P. M.
Voroshilov
,
S. V.
Makarov
, and
Y. S.
Kivshar
, “
Active meta-optics and nanophotonics with halide perovskites
,”
Applied Physics Reviews
6
,
031307
(
2019
).
17.
S.
Karpov
, “
Abc-model for interpretation of internal quantum efficiency and its droop in iii-nitride leds: a review
,”
Opt. Quantum Electron.
47
,
1293
1303
(
2015
).
18.
J. M.
Richter
,
M.
Abdi-Jalebi
,
A.
Sadhanala
,
M.
Tabachnyk
,
J. P.
Rivett
,
L. M.
Pazos-Outón
,
K. C.
Gödel
,
M.
Price
,
F.
Deschler
, and
R. H.
Friend
, “
Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling
,”
Nature Communications
7
,
1
8
(
2016
).
19.
S.-T.
Ha
,
C.
Shen
,
J.
Zhang
, and
Q.
Xiong
, “
Laser cooling of organic–inorganic lead halide perovskites
,”
Nature Photonics
10
,
115
(
2016
).
20.
S.
Makarov
,
A.
Furasova
,
E.
Tiguntseva
,
A.
Hemmetter
,
A.
Berestennikov
,
A.
Pushkarev
,
A.
Zakhidov
, and
Y.
Kivshar
, “
Halide-perovskite resonant nanophotonics
,”
Advanced Optical Materials
7
,
1800784
(
2019
).
21.
Y.
Cao
,
N.
Wang
,
H.
Tian
,
J.
Guo
,
Y.
Wei
,
H.
Chen
,
Y.
Miao
,
W.
Zou
,
K.
Pan
,
Y.
He
, et al, “
Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures
,”
Nature
562
,
249
253
(
2018
).
22.
D.
Gets
,
D.
Saranin
,
A.
Ishteev
,
R.
Haroldson
,
E.
Danilovskiy
,
S.
Makarov
, and
A.
Zakhidov
, “
Light-emitting perovskite solar cell with segregation enhanced self doping
,”
Applied Surface Science
476
,
486
492
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.