In the present paper, we examine the formation of topological edge states of pairs of interacting anyons. Such quantum particles obey specific generalized commutation relations interpolating between fermionic and bosonic ones and can be observed, for example, in the fractional quantum Hall effect. Considering a one-dimensional array of microresonators supporting anyonic excitations and connected with nearest neighbor tunneling couplings, we demonstrate that topological edge states can be observed. The presence and localization of these states at one of the array’s edges is governed by the statistical exchange angle 0 < θ < π, with limiting values 0 and π corresponding to either bosons or pseudo-fermions, allowing us to address them as statistics-induced topological states.

1.
M.A.
Gorlach
and
A.N.
Poddunby
, “
Topological edge states of bound photon pairs
”,
Phys. Rev. A
95
,
053866
(
2017
).
2.
S.
Mittal
,
E.A.
Goldschmidt
, and
M.
Hafezi
, “
A topological source of quantum light
”,
Nature
561
,
502
506
(
2018
).
3.
A.
Blanco-Redondo
,
B.
Bell
,
D.
Oren
,
B.J.
Eggleton
, and
M.
Segev
, “
Topological protection of biphoton states
”,
Science
362
,
568
571
(
2018
).
4.
C.
Nayak
,
S.H.
Simon
,
Ady
Stern
,
M.
Freedman
, and
S. Das
Sarma
,
Non-Abelian anyons and topological quantum computation
,
Rev. Mod. Phys.
80
,
1083
1159
(
2008
).
5.
M.
Dolev
,
M.
Heiblum
,
V.
Umansky
,
Ady
Stern
, and
D.
Mahalu
, “
Observation of a quarter of an electron charge at the ν=5/2 quantum Hall state
,
Nature
452
,
829
835
(
2008
).
6.
K.I.
Bolotin
,
F.
Ghahari
,
M.D.
Shulman
,
H.L.
Stormer
, and
P.
Kim
, “
Observation of the fractional quantum Hall effect in graphene
”,
Nature
462
,
196
199
(
2009
).
7.
S.
Longhi
,
G. Della
Valle
, “
Anyons in one-dimensional lattices: a photonic realization
”,
Opt. Lett.
37
,
2160
2162
(
2012
).
8.
M.
Todorić
,
D.
Jukić
,
D.
Radić
,
M.
Soljačić
, and
H.
Buljan
, “
Quantum Hall Effect with Composites of Magnetic Flux Tubes and Charged Particles
”,
Phys. Rev. Lett.
120
,
267201
(
2018
).
9.
J.
Ningyuan
,
C.
Owens
,
A.
Sommer
,
D.
Schuster
, and
J.
Simon
, “
Time- and site-resolved dynamics in a topological circuit
”,
Phys. Rev. X
5
,
021031
(
2015
).
10.
V.V.
Albert
,
L.I.
Glazman
, and
L.
Jiang
, “
Topological properties of linear circuit lattices
”,
Phys. Rev. Lett.
114
,
173902
(
2015
).
11.
S.
Imhof
 et al, “
Topolectrical-circuit realization of topological corner modes
”,
Nat. Phys.
14
925
929
(
2018
).
12.
N.A.
Olekhno
 et al, “
Topological edge states of interacting photon pairs emulated in a topolectrical circuit
”,
Nat. Commun.
11
,
1436
(
2020
).
13.
M.
Pretko
, “
Electric circuit realizations of fracton physics
”,
Phys. Rev. B
100
,
245103
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.